We study the Boolean algebras R, CS, D of regular languages, context-sensitive languages and decidable languages, respectively, over any alphabet. It is well known that R ⊂ CS ⊂ D, with proper inclusions. After observing that these Boolean algebras are all isomorphic, we study some immunity properties: for instance we prove that for every coinfinite decidable language L there exists a decidable language L′ such that L ⊆ L′ , L′ −L is infinite, and there is no context-sensitive language L′′ , with L′′ ⊆ L′ unless L′′ − L is finite; similarly, for every coinfinite regular language L there exists a context-sensitive language L′ such that L ⊆ L′ , L′−L is infinite, and there is no regular language L′′ such that L′′ ⊆ L′ , unless L′′−L is finite.

Marini, C., Simi, G., Sorbi, A., Sorrentino, M. (2011). A note on algebras of languages. THEORETICAL COMPUTER SCIENCE, 412(46), 6531-6536 [10.1016/j.tcs.2011.08.022].

A note on algebras of languages

Simi, G.;Sorbi, A.;
2011-01-01

Abstract

We study the Boolean algebras R, CS, D of regular languages, context-sensitive languages and decidable languages, respectively, over any alphabet. It is well known that R ⊂ CS ⊂ D, with proper inclusions. After observing that these Boolean algebras are all isomorphic, we study some immunity properties: for instance we prove that for every coinfinite decidable language L there exists a decidable language L′ such that L ⊆ L′ , L′ −L is infinite, and there is no context-sensitive language L′′ , with L′′ ⊆ L′ unless L′′ − L is finite; similarly, for every coinfinite regular language L there exists a context-sensitive language L′ such that L ⊆ L′ , L′−L is infinite, and there is no regular language L′′ such that L′′ ⊆ L′ , unless L′′−L is finite.
2011
Marini, C., Simi, G., Sorbi, A., Sorrentino, M. (2011). A note on algebras of languages. THEORETICAL COMPUTER SCIENCE, 412(46), 6531-6536 [10.1016/j.tcs.2011.08.022].
File in questo prodotto:
File Dimensione Formato  
TCS8493.pdf

non disponibili

Descrizione: Articolo unico
Tipologia: PDF editoriale
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 394.9 kB
Formato Adobe PDF
394.9 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11365/8998