We give an alternative and more informative proof that every incomplete \sigmazerotwo-enumeration degree is the meet of two incomparable \sigmazerotwo-degrees, which allows us to show the stronger result that for every incomplete $\Sigma^0_2$-enumeration degree $\degr{a}$, there exist enumeration degrees $\degr{x}_1$ and $\degr{x}_2$ such that $\degr{a}$, $\degr{x}_1$, $\degr{x}_2$ are incomparable, and for all $\degr{b} \leq \degr{a}$, $\degr{b} = \left( \degr{b} \vee \degr{x}_1 \right) \wedge \left( \degr{b} \vee \degr{x}_2 \right)$.

Affatato, M., Kent, T.F., Sorbi, A. (2008). Branching in the Σ02 -enumeration degrees: a new perspective. ARCHIVE FOR MATHEMATICAL LOGIC, 47(3), 221-231 [10.1007/s00153-008-0081-7].

Branching in the Σ02 -enumeration degrees: a new perspective

SORBI, ANDREA
2008-01-01

Abstract

We give an alternative and more informative proof that every incomplete \sigmazerotwo-enumeration degree is the meet of two incomparable \sigmazerotwo-degrees, which allows us to show the stronger result that for every incomplete $\Sigma^0_2$-enumeration degree $\degr{a}$, there exist enumeration degrees $\degr{x}_1$ and $\degr{x}_2$ such that $\degr{a}$, $\degr{x}_1$, $\degr{x}_2$ are incomparable, and for all $\degr{b} \leq \degr{a}$, $\degr{b} = \left( \degr{b} \vee \degr{x}_1 \right) \wedge \left( \degr{b} \vee \degr{x}_2 \right)$.
2008
Affatato, M., Kent, T.F., Sorbi, A. (2008). Branching in the Σ02 -enumeration degrees: a new perspective. ARCHIVE FOR MATHEMATICAL LOGIC, 47(3), 221-231 [10.1007/s00153-008-0081-7].
File in questo prodotto:
File Dimensione Formato  
fulltext-branching.pdf

non disponibili

Descrizione: Articolo unico
Tipologia: PDF editoriale
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 201.3 kB
Formato Adobe PDF
201.3 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11365/8816