We investigate differences in isomorphism types for Rogers semilattices of computable numberings of families of sets lying in different levels of the arithmetical hierarchy.

Badaev, S., Goncharov, S., Sorbi, A. (2006). Isomorphism types of Rogers semilattices for families from different levels of the arithmetical hierarchy. ALGEBRA AND LOGIC, 45(6), 361-370.

Isomorphism types of Rogers semilattices for families from different levels of the arithmetical hierarchy

SORBI, ANDREA
2006-01-01

Abstract

We investigate differences in isomorphism types for Rogers semilattices of computable numberings of families of sets lying in different levels of the arithmetical hierarchy.
2006
Badaev, S., Goncharov, S., Sorbi, A. (2006). Isomorphism types of Rogers semilattices for families from different levels of the arithmetical hierarchy. ALGEBRA AND LOGIC, 45(6), 361-370.
File in questo prodotto:
File Dimensione Formato  
iso-types.pdf

non disponibili

Descrizione: Articolo unico
Tipologia: PDF editoriale
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 158.48 kB
Formato Adobe PDF
158.48 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11365/8814