We consider a mathematical model of an age-structured population of some fisheries (for example, anchovies, sardines or soles). Two time scales are involved in the problem: the fast time scale for the migration dynamics and the slow time scale for the demographic process. At a first step, we study the so called ``aggregated'' system by means of the semigroups theory. Then, we study the asymptotic behaviour of the model by using the Chapman-Enskog procedure. In particular, we study initial, boundary and corner layer effects in order to obtain the exact initial and boundary conditions the approximate solution has to satisfy.

Lisi, M., Totaro, S. (2005). The Chapman-Enskog procedure for an age-structured population model: initial, boundary and corner layer corrections Math. Biosci.,. MATHEMATICAL BIOSCIENCES, 196, 153-156 [10.1016/j.mbs.2005.02.006].

The Chapman-Enskog procedure for an age-structured population model: initial, boundary and corner layer corrections Math. Biosci.,

TOTARO, SILVIA
2005-01-01

Abstract

We consider a mathematical model of an age-structured population of some fisheries (for example, anchovies, sardines or soles). Two time scales are involved in the problem: the fast time scale for the migration dynamics and the slow time scale for the demographic process. At a first step, we study the so called ``aggregated'' system by means of the semigroups theory. Then, we study the asymptotic behaviour of the model by using the Chapman-Enskog procedure. In particular, we study initial, boundary and corner layer effects in order to obtain the exact initial and boundary conditions the approximate solution has to satisfy.
2005
Lisi, M., Totaro, S. (2005). The Chapman-Enskog procedure for an age-structured population model: initial, boundary and corner layer corrections Math. Biosci.,. MATHEMATICAL BIOSCIENCES, 196, 153-156 [10.1016/j.mbs.2005.02.006].
File in questo prodotto:
File Dimensione Formato  
87409_UPLOAD.pdf

non disponibili

Tipologia: Altro materiale allegato
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 383.15 kB
Formato Adobe PDF
383.15 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11365/8805
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo