This correspondence proves a convergence result for the Lotka-Volterra dynamical systems with symmetric interaction parameters between different species. These can be considered as a subclass of the competitive neural networks introduced by Cohen and Grossberg in 1983. The theorem guarantees that each forward trajectory has finite length and converges toward a single equilibrium point, even for those parameters for which there are infinitely many nonisolated equilibrium points. The convergence result in this correspondence, which is proved by means of a new method based on the Lojasiewicz inequality for gradient systems of analytic functions, is stronger than the previous. result established by Cohen and Grossberg via LaSalle's invariance principle, which requires, for convergence, the additional assumption that the equilibrium points be isolated.

Forti, M. (2008). Convergence of a subclass of Cohen-Grossberg neural networks via the Lojasiewicz inequality. IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART B-CYBERNETICS, 38(1), 252-257 [10.1109/TSMCB.2007.907041].

Convergence of a subclass of Cohen-Grossberg neural networks via the Lojasiewicz inequality

FORTI, MAURO
2008

Abstract

This correspondence proves a convergence result for the Lotka-Volterra dynamical systems with symmetric interaction parameters between different species. These can be considered as a subclass of the competitive neural networks introduced by Cohen and Grossberg in 1983. The theorem guarantees that each forward trajectory has finite length and converges toward a single equilibrium point, even for those parameters for which there are infinitely many nonisolated equilibrium points. The convergence result in this correspondence, which is proved by means of a new method based on the Lojasiewicz inequality for gradient systems of analytic functions, is stronger than the previous. result established by Cohen and Grossberg via LaSalle's invariance principle, which requires, for convergence, the additional assumption that the equilibrium points be isolated.
Forti, M. (2008). Convergence of a subclass of Cohen-Grossberg neural networks via the Lojasiewicz inequality. IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART B-CYBERNETICS, 38(1), 252-257 [10.1109/TSMCB.2007.907041].
File in questo prodotto:
File Dimensione Formato  
403941_cohen_grossberg.pdf

non disponibili

Tipologia: PDF editoriale
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 138.3 kB
Formato Adobe PDF
138.3 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11365/8663