The primary event that initiates vision is the photoinduced isomerization of retinal in the visual pigment rhodopsin (Rh). Here, we use a scaled quantum mechanics/molecular mechanics potential that reproduces the isomerization path determined with multiconfigurational perturbation theory to follow the excited-state evolution of bovine Rh. The analysis of a 140-fs trajectory provides a description of the electronic and geometrical changes that prepare the system for decay to the ground state. The data uncover a complex change of the retinal backbone that, at 60-fs delay, initiates a space saving ‘‘asynchronous bicycle-pedal or crankshaft’’ motion, leading to a conical intersection on a 110-fs time scale. It is shown that the twisted structure achieved at decay features a momentum that provides a natural route toward the photoRh structure recently resolved by using femtosecond-stimulated Raman spectroscopy.
Frutos, L.M., Andruniów, T., Santoro, S., Ferré, N., Olivucci, M. (2007). Tracking the Excited State Time Evolution of the Visual Pigment with Multiconfigurational Quantum Chemistry. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 104(19), 7764-7769 [10.1073/pnas.0701732104].
Tracking the Excited State Time Evolution of the Visual Pigment with Multiconfigurational Quantum Chemistry
Olivucci, Massimo
2007-01-01
Abstract
The primary event that initiates vision is the photoinduced isomerization of retinal in the visual pigment rhodopsin (Rh). Here, we use a scaled quantum mechanics/molecular mechanics potential that reproduces the isomerization path determined with multiconfigurational perturbation theory to follow the excited-state evolution of bovine Rh. The analysis of a 140-fs trajectory provides a description of the electronic and geometrical changes that prepare the system for decay to the ground state. The data uncover a complex change of the retinal backbone that, at 60-fs delay, initiates a space saving ‘‘asynchronous bicycle-pedal or crankshaft’’ motion, leading to a conical intersection on a 110-fs time scale. It is shown that the twisted structure achieved at decay features a momentum that provides a natural route toward the photoRh structure recently resolved by using femtosecond-stimulated Raman spectroscopy.File | Dimensione | Formato | |
---|---|---|---|
Frutos Proc Natl Acad Sci U S A 2007.pdf
non disponibili
Tipologia:
Post-print
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
1.01 MB
Formato
Adobe PDF
|
1.01 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11365/8041
Attenzione
Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo