Oxidative stress has recently been suggested to be a mediator of apoptotic cell death [Buttke and Sandstrom (1994) Immunology Today 15, 7-10], although evidence that this phenomenon is a widespread component of apoptosis is lacking. When rat thymocytes were exposed to the glucocorticoid methylprednisolone (MPS), a progressive increase in intracellular peroxides and a decrease in glutathione (GSH) were observed to accompany the onset of apoptosis. Using Percoll density gradients to isolate subpopulations of thymocytes at different stages of apoptosis, the increase in peroxide content was found to bt restricted to apoptotic cells, while a significant depletion of GSH and reduced protein thiol was detected in both pre-apoptotic and fully apoptotic cells. To investigate the biological significance of these redox changes, the free radical spin traps 5,5-dimethyl-1-pyrroline-1-oxide (DMPO) and 3,3,5, 5-tetramethyl-1-pyrroline-1-oxide (TMPO), and the related nitroxide-radical antioxidant 2,2,6,6-tetramethyl-1-piperidinyl-1-oxyl (TEMPO) were tested as inhibitors of thymocyte apoptosis. The cell shrinkage and DNA fragmentation induced by four different initiators of apoptosis were reduced by each compound. TEMPO inhibition of both etoposide- and MPS-induced thymocyte DNA fragmentation was also found to correlate with an increase in intracellular GSH, providing support for the proposal that its antioxidant properties were responsible for the observed protective activity. We conclude that some form of intracellular oxidation (here measured indirectly by changes in intracellular GSH and peroxide levels) is required during thymocyte apoptosis even when this process is initiated by an agent that does not exert a direct oxidant action.
Slater, A., Nobel, S., Maellaro, E., Bustamante, J., Kimland, M., Orrenius, S. (1995). Nitrone spin traps and a nitroxide antioxidant inhibit a common pathway of thymocyte apoptosis. BIOCHEMICAL JOURNAL, 306(Part 3), 771-778 [10.1042/bj3060771].
Nitrone spin traps and a nitroxide antioxidant inhibit a common pathway of thymocyte apoptosis
MAELLARO, E.;
1995-01-01
Abstract
Oxidative stress has recently been suggested to be a mediator of apoptotic cell death [Buttke and Sandstrom (1994) Immunology Today 15, 7-10], although evidence that this phenomenon is a widespread component of apoptosis is lacking. When rat thymocytes were exposed to the glucocorticoid methylprednisolone (MPS), a progressive increase in intracellular peroxides and a decrease in glutathione (GSH) were observed to accompany the onset of apoptosis. Using Percoll density gradients to isolate subpopulations of thymocytes at different stages of apoptosis, the increase in peroxide content was found to bt restricted to apoptotic cells, while a significant depletion of GSH and reduced protein thiol was detected in both pre-apoptotic and fully apoptotic cells. To investigate the biological significance of these redox changes, the free radical spin traps 5,5-dimethyl-1-pyrroline-1-oxide (DMPO) and 3,3,5, 5-tetramethyl-1-pyrroline-1-oxide (TMPO), and the related nitroxide-radical antioxidant 2,2,6,6-tetramethyl-1-piperidinyl-1-oxyl (TEMPO) were tested as inhibitors of thymocyte apoptosis. The cell shrinkage and DNA fragmentation induced by four different initiators of apoptosis were reduced by each compound. TEMPO inhibition of both etoposide- and MPS-induced thymocyte DNA fragmentation was also found to correlate with an increase in intracellular GSH, providing support for the proposal that its antioxidant properties were responsible for the observed protective activity. We conclude that some form of intracellular oxidation (here measured indirectly by changes in intracellular GSH and peroxide levels) is required during thymocyte apoptosis even when this process is initiated by an agent that does not exert a direct oxidant action.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11365/7804
Attenzione
Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo