Many researchers are quite skeptical about the actual behavior of neural network learning algorithms like backpropagation. One of the major problems is with the lack of clear theoretical results on optimal convergence, particularly for pattern mode algorithms. In this paper, we prove the companion of Rosenblatt's PC (perceptron convergence) theorem for feedforward networks (1960), stating that pattern mode backpropagation converges to an optimal solution for linearly separable patterns.
Gori, M., Maggini, M. (1996). Optimal convergence of on-line backpropagation. IEEE TRANSACTIONS ON NEURAL NETWORKS, 7(1), 251-254 [10.1109/72.478415].
Optimal convergence of on-line backpropagation
GORI, MARCO;MAGGINI, MARCO
1996-01-01
Abstract
Many researchers are quite skeptical about the actual behavior of neural network learning algorithms like backpropagation. One of the major problems is with the lack of clear theoretical results on optimal convergence, particularly for pattern mode algorithms. In this paper, we prove the companion of Rosenblatt's PC (perceptron convergence) theorem for feedforward networks (1960), stating that pattern mode backpropagation converges to an optimal solution for linearly separable patterns.File | Dimensione | Formato | |
---|---|---|---|
TNN96.pdf
non disponibili
Tipologia:
Post-print
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
421.02 kB
Formato
Adobe PDF
|
421.02 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11365/7633
Attenzione
Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo