c-Myc plays an essential role in proliferation, differentiation, and apoptosis. Because of its relevance to cancer, most studies have focused on the cellular consequences of c-Myc overexpression. Here, we address the role of physiological levels of c-Myc in drug-induced apoptosis. By using c-MYC null cells we confirm and extend recent reports showing a c-Myc requirement for the induction of apoptosis by a number of anticancer agents. In particular, we show that c-Myc is required for the induction of apoptosis by doxorubicin and etoposide, whereas it is not required for camptothecin-induced cell death. We have investigated the molecular mechanisms involved in executing doxorubicin-induced apoptosis and show caspase-3 activation by both mitochondria-dependent and -independent pathways. Moreover, serine proteases participate in doxorubicin-induced apoptosis partly by contributing to caspase-3 activation. Finally, a complete rescue from doxorubicin-induced apoptosis is obtained only when serine proteases, caspase-3, and mitochondrial activation are inhibited simultaneously. Interestingly, doxorubicin requires c-Myc for the activation of all of these pathways. Our findings therefore support a model in which doxorubicin simultaneously triggers multiple c-Myc-dependent apoptosis pathways.

Grassilli, E., Ballabeni, A., Maellaro, E., DEL BELLO, B., Helin, K. (2004). Loss of MYC Confers Resistance to Doxorubicin-induced Apoptosis by Preventing the Activation of Multiple Serine Protease- and Caspase-mediated Pathways. THE JOURNAL OF BIOLOGICAL CHEMISTRY, 279(20), 21318-21326 [10.1074/jbc.M313532200].

Loss of MYC Confers Resistance to Doxorubicin-induced Apoptosis by Preventing the Activation of Multiple Serine Protease- and Caspase-mediated Pathways

MAELLARO, E.;DEL BELLO, B.;
2004-01-01

Abstract

c-Myc plays an essential role in proliferation, differentiation, and apoptosis. Because of its relevance to cancer, most studies have focused on the cellular consequences of c-Myc overexpression. Here, we address the role of physiological levels of c-Myc in drug-induced apoptosis. By using c-MYC null cells we confirm and extend recent reports showing a c-Myc requirement for the induction of apoptosis by a number of anticancer agents. In particular, we show that c-Myc is required for the induction of apoptosis by doxorubicin and etoposide, whereas it is not required for camptothecin-induced cell death. We have investigated the molecular mechanisms involved in executing doxorubicin-induced apoptosis and show caspase-3 activation by both mitochondria-dependent and -independent pathways. Moreover, serine proteases participate in doxorubicin-induced apoptosis partly by contributing to caspase-3 activation. Finally, a complete rescue from doxorubicin-induced apoptosis is obtained only when serine proteases, caspase-3, and mitochondrial activation are inhibited simultaneously. Interestingly, doxorubicin requires c-Myc for the activation of all of these pathways. Our findings therefore support a model in which doxorubicin simultaneously triggers multiple c-Myc-dependent apoptosis pathways.
2004
Grassilli, E., Ballabeni, A., Maellaro, E., DEL BELLO, B., Helin, K. (2004). Loss of MYC Confers Resistance to Doxorubicin-induced Apoptosis by Preventing the Activation of Multiple Serine Protease- and Caspase-mediated Pathways. THE JOURNAL OF BIOLOGICAL CHEMISTRY, 279(20), 21318-21326 [10.1074/jbc.M313532200].
File in questo prodotto:
File Dimensione Formato  
J. Biol. Chem.pdf

non disponibili

Tipologia: Post-print
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 632.15 kB
Formato Adobe PDF
632.15 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Abs J B C .doc

non disponibili

Tipologia: Abstract
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 20.5 kB
Formato Microsoft Word
20.5 kB Microsoft Word   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11365/7492
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo