In this paper we consider an infinite dimensional bifurcation equation depending on a parameter epsilon > 0. By means of the theory of condensing operators, we prove the existence of a branch of solutions, parametrized by epsilon, bifurcating from a curve of solutions of the bifurcation equation obtained for epsilon = 0. We apply this result to a specific problem, namely to the existence of periodic solutions bifurcating from the limit cycle of an autonomous functional differential equation of neutral type when it is periodically perturbed by a nonlinear perturbation term of small amplitude.
Couchouron, J._.F., M., K., Nistri, P. (2013). An infinite dimensional bifurcation problem with application to a class of functional differential equations of neutral type. COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 12(5), 1845-1859 [10.3934/cpaa.2013.12].
An infinite dimensional bifurcation problem with application to a class of functional differential equations of neutral type
NISTRI, PAOLO
2013-01-01
Abstract
In this paper we consider an infinite dimensional bifurcation equation depending on a parameter epsilon > 0. By means of the theory of condensing operators, we prove the existence of a branch of solutions, parametrized by epsilon, bifurcating from a curve of solutions of the bifurcation equation obtained for epsilon = 0. We apply this result to a specific problem, namely to the existence of periodic solutions bifurcating from the limit cycle of an autonomous functional differential equation of neutral type when it is periodically perturbed by a nonlinear perturbation term of small amplitude.File | Dimensione | Formato | |
---|---|---|---|
397847-U-GOV.pdf
non disponibili
Tipologia:
Pre-print
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
237.53 kB
Formato
Adobe PDF
|
237.53 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11365/7033
Attenzione
Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo