In this paper we consider an infinite dimensional bifurcation equation depending on a parameter epsilon > 0. By means of the theory of condensing operators, we prove the existence of a branch of solutions, parametrized by epsilon, bifurcating from a curve of solutions of the bifurcation equation obtained for epsilon = 0. We apply this result to a specific problem, namely to the existence of periodic solutions bifurcating from the limit cycle of an autonomous functional differential equation of neutral type when it is periodically perturbed by a nonlinear perturbation term of small amplitude.

Couchouron, J._.F., M., K., Nistri, P. (2013). An infinite dimensional bifurcation problem with application to a class of functional differential equations of neutral type. COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 12(5), 1845-1859 [10.3934/cpaa.2013.12].

An infinite dimensional bifurcation problem with application to a class of functional differential equations of neutral type

NISTRI, PAOLO
2013-01-01

Abstract

In this paper we consider an infinite dimensional bifurcation equation depending on a parameter epsilon > 0. By means of the theory of condensing operators, we prove the existence of a branch of solutions, parametrized by epsilon, bifurcating from a curve of solutions of the bifurcation equation obtained for epsilon = 0. We apply this result to a specific problem, namely to the existence of periodic solutions bifurcating from the limit cycle of an autonomous functional differential equation of neutral type when it is periodically perturbed by a nonlinear perturbation term of small amplitude.
2013
Couchouron, J._.F., M., K., Nistri, P. (2013). An infinite dimensional bifurcation problem with application to a class of functional differential equations of neutral type. COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 12(5), 1845-1859 [10.3934/cpaa.2013.12].
File in questo prodotto:
File Dimensione Formato  
397847-U-GOV.pdf

non disponibili

Tipologia: Pre-print
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 237.53 kB
Formato Adobe PDF
237.53 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11365/7033
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo