The volume of the L-p-centroid body of a convex body K subset of R-d is a convex function of a time-like parameter when each chord of K parallel to a fixed direction moves with constant speed. This fact is used to study extrema of some affine invariant functionals involving the volume of the L-p-centroid body and related to classical open problems like the slicing problem. Some variants of the L-p-Busemann-Petty centroid inequality are established. The reverse form of these inequalities is proved in the two-dimensional case.
Campi, S., Gronchi, P. (2002). On the reverse Lp-Busemann-Petty centroid inequality. MATHEMATIKA, 49(97-98), 1-11 [10.1112/S0025579300016004].
On the reverse Lp-Busemann-Petty centroid inequality
CAMPI S.;
2002-01-01
Abstract
The volume of the L-p-centroid body of a convex body K subset of R-d is a convex function of a time-like parameter when each chord of K parallel to a fixed direction moves with constant speed. This fact is used to study extrema of some affine invariant functionals involving the volume of the L-p-centroid body and related to classical open problems like the slicing problem. Some variants of the L-p-Busemann-Petty centroid inequality are established. The reverse form of these inequalities is proved in the two-dimensional case.File | Dimensione | Formato | |
---|---|---|---|
reverseBP.pdf
non disponibili
Tipologia:
Pre-print
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
192.65 kB
Formato
Adobe PDF
|
192.65 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11365/6815
Attenzione
Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo