We prove upper and lower bounds on the eigenvalues (as the H(0)(1)(Omega) norm of the eigenfunction tends to zero) in bifurcation problems for a class of semilinear elliptic equations in bounded domains of R(N). It is shown that these bounds are computable in terms of the eigenvalues of the associated linear equation. (C) 2010 Elsevier Inc. All rights reserved.
Chiappinelli, R. (2010). Upper and lower bounds for higher order eigenvalues of some semilinear elliptic equations. APPLIED MATHEMATICS AND COMPUTATION, 216(12), 3772-3777 [10.1016/j.amc.2010.05.050].
Upper and lower bounds for higher order eigenvalues of some semilinear elliptic equations
CHIAPPINELLI R.
2010-01-01
Abstract
We prove upper and lower bounds on the eigenvalues (as the H(0)(1)(Omega) norm of the eigenfunction tends to zero) in bifurcation problems for a class of semilinear elliptic equations in bounded domains of R(N). It is shown that these bounds are computable in terms of the eigenvalues of the associated linear equation. (C) 2010 Elsevier Inc. All rights reserved.File | Dimensione | Formato | |
---|---|---|---|
118050_UPLOAD.pdf
non disponibili
Tipologia:
Altro materiale allegato
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
307.76 kB
Formato
Adobe PDF
|
307.76 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11365/6684
Attenzione
Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo