The paper studies the cheap spectral factorization problem in the state space from a strictly geometric viewpoint. A new solution based on the geometric properties of the related Hamiltonian system is proposed and the connection between the H2-optimal model following and the spectral factorization problems is pointed out. A numerical example illustrates the theory and shows the effectiveness of the proposed solution.

G., M., F., M., & Prattichizzo, D. (2009). A Geometric Solution to the Cheap Spectral Factorization Problem. In Proc. EUCA European Conference on Control (pp.814-819).

A Geometric Solution to the Cheap Spectral Factorization Problem

PRATTICHIZZO, DOMENICO
2009

Abstract

The paper studies the cheap spectral factorization problem in the state space from a strictly geometric viewpoint. A new solution based on the geometric properties of the related Hamiltonian system is proposed and the connection between the H2-optimal model following and the spectral factorization problems is pointed out. A numerical example illustrates the theory and shows the effectiveness of the proposed solution.
9789633113691
G., M., F., M., & Prattichizzo, D. (2009). A Geometric Solution to the Cheap Spectral Factorization Problem. In Proc. EUCA European Conference on Control (pp.814-819).
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11365/5001
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo