We consider a T-periodically perturbed autonomous functional differential equation of neutral type. We assume the existence of a T-periodic limit cycle x_0 for the unperturbed autonomous system. We also assume that the linearized unperturbed equation around the limit cycle has the characteristic multiplier 1 of geometric multiplicity 1 and algebraic multiplicity greater than 1. The paper deals with the existence of a branch of T-periodic solutions emanating from the limit cycle.

Couchouron, J.-., Kamenskiǐ, M., Mikhaylenko, B., & Nistri, P. (2015). Periodic bifurcation problems for fully nonlinear neutral functional differential equations via an integral operator approach: the multidimensional degeneration case. TOPOLOGICAL METHODS IN NONLINEAR ANALYSIS, 46(2), 631-663 [10.12775/TMNA.2015.062].

Periodic bifurcation problems for fully nonlinear neutral functional differential equations via an integral operator approach: the multidimensional degeneration case

Nistri, P.
2015

Abstract

We consider a T-periodically perturbed autonomous functional differential equation of neutral type. We assume the existence of a T-periodic limit cycle x_0 for the unperturbed autonomous system. We also assume that the linearized unperturbed equation around the limit cycle has the characteristic multiplier 1 of geometric multiplicity 1 and algebraic multiplicity greater than 1. The paper deals with the existence of a branch of T-periodic solutions emanating from the limit cycle.
Couchouron, J.-., Kamenskiǐ, M., Mikhaylenko, B., & Nistri, P. (2015). Periodic bifurcation problems for fully nonlinear neutral functional differential equations via an integral operator approach: the multidimensional degeneration case. TOPOLOGICAL METHODS IN NONLINEAR ANALYSIS, 46(2), 631-663 [10.12775/TMNA.2015.062].
File in questo prodotto:
File Dimensione Formato  
TMNA1415.pdf

non disponibili

Tipologia: Post-print
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 234.55 kB
Formato Adobe PDF
234.55 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11365/48455