Glutathione (GSH), the most abundant intracellular low molecular mass thiol, protects cells from oxidative damage and regulates their function. Available information is inconsistent regarding levels of GSH and its disulfide (GSSG) in maintenance hemodialysis patients (HD). In addition, very limited data are available in HD about the relationship of GSH and GSSG with other measures of thiol metabolism and with the clinical profile. We tested the hypothesis that erythrocyte GSH/GSSG redox potential (Eh) is lower in HD than in healthy controls (C), and that Eh correlates with posttranslational thiolation of hemoglobin (Hb) and with standard clinical parameters in HD. In cross-sectional comparison of 33 stable HD and 21 C, we found a net loss of reducing capacity in HD as indicated by low erythrocyte GSH/GSSG Eh (-257 ± 5.5 vs -270 ± 5.6 mV, P = 0.002). Glutathionylated Hb (HbSSG) was 46% higher in HD than C (19.3 ± 4.80 vs 13.2 ± 2.79 pmol/mg Hb; P = 0.001) and cysteinylated Hb (HbSSCy) was >3-fold higher in HD than C [38.3 (29.0-63.3) vs 11.5 (9.6-17.2) pmol/mg Hb; P = 0.001]. In multiple regression analysis of the HD cases, statistically significant associations were found between the GSH/GSSG Eh and the blood urea nitrogen (P = 0.001), creatinine (P = 0.015) and normalized protein catabolic rate (P = 0.05), after adjusting for age, race/ethnicity, and etiology of end-stage renal disease. In conclusion, accurate and precise analysis of GSH, GSSG, and mixed disulfides reveals loss of erythrocyte GSH/GSSG Eh, rise of both HbSSG and HbSSCy, and correlation of these thiols with measures of uremia and dietary protein intake.

Khazim, K., Giustarini, D., Rossi, R., Verkaik, D., Cornell, J.E., Cunningham, S.E., et al. (2013). Glutathione redox potential is low and glutathionylated and cysteinylated hemoglobin levels are elevated in maintenance hemodialysis patients. TRANSLATIONAL RESEARCH, 162(1), 16-25 [10.1016/j.trsl.2012.12.014].

Glutathione redox potential is low and glutathionylated and cysteinylated hemoglobin levels are elevated in maintenance hemodialysis patients

Giustarini D.;Rossi R.;
2013-01-01

Abstract

Glutathione (GSH), the most abundant intracellular low molecular mass thiol, protects cells from oxidative damage and regulates their function. Available information is inconsistent regarding levels of GSH and its disulfide (GSSG) in maintenance hemodialysis patients (HD). In addition, very limited data are available in HD about the relationship of GSH and GSSG with other measures of thiol metabolism and with the clinical profile. We tested the hypothesis that erythrocyte GSH/GSSG redox potential (Eh) is lower in HD than in healthy controls (C), and that Eh correlates with posttranslational thiolation of hemoglobin (Hb) and with standard clinical parameters in HD. In cross-sectional comparison of 33 stable HD and 21 C, we found a net loss of reducing capacity in HD as indicated by low erythrocyte GSH/GSSG Eh (-257 ± 5.5 vs -270 ± 5.6 mV, P = 0.002). Glutathionylated Hb (HbSSG) was 46% higher in HD than C (19.3 ± 4.80 vs 13.2 ± 2.79 pmol/mg Hb; P = 0.001) and cysteinylated Hb (HbSSCy) was >3-fold higher in HD than C [38.3 (29.0-63.3) vs 11.5 (9.6-17.2) pmol/mg Hb; P = 0.001]. In multiple regression analysis of the HD cases, statistically significant associations were found between the GSH/GSSG Eh and the blood urea nitrogen (P = 0.001), creatinine (P = 0.015) and normalized protein catabolic rate (P = 0.05), after adjusting for age, race/ethnicity, and etiology of end-stage renal disease. In conclusion, accurate and precise analysis of GSH, GSSG, and mixed disulfides reveals loss of erythrocyte GSH/GSSG Eh, rise of both HbSSG and HbSSCy, and correlation of these thiols with measures of uremia and dietary protein intake.
2013
Khazim, K., Giustarini, D., Rossi, R., Verkaik, D., Cornell, J.E., Cunningham, S.E., et al. (2013). Glutathione redox potential is low and glutathionylated and cysteinylated hemoglobin levels are elevated in maintenance hemodialysis patients. TRANSLATIONAL RESEARCH, 162(1), 16-25 [10.1016/j.trsl.2012.12.014].
File in questo prodotto:
File Dimensione Formato  
2013 Kaled TR.pdf

non disponibili

Tipologia: Post-print
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 407.77 kB
Formato Adobe PDF
407.77 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11365/46808
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo