Everyday problem solving requires the ability to go beyond experience by efficiently encoding and manipulating new information, i.e., fluid intelligence (Gf) [1]. Performance in tasks involving Gf, such as logical and abstract reasoning, has been shown to rely on distributed neural networks, with a crucial role played by prefrontal regions [2]. Synchronization of neuronal activity in the gamma band is a ubiquitous phenomenon within the brain; however, no evidence of its causal involvement in cognition exists to date [3]. Here, we show an enhancement of Gf ability in a cognitive task induced by exogenous rhythmic stimulation within the gamma band. Imperceptible alternating current [4] delivered through the scalp over the left middle frontal gyrus resulted in a frequency-specific shortening of the time required to find the correct solution in a visuospatial abstract reasoning task classically employed to measure Gf abilities (i.e., Raven's matrices) [5]. Crucially, gamma-band stimulation (γ-tACS) selectively enhanced performance only on more complex trials involving conditional/logical reasoning. The present finding supports a direct involvement of gamma oscillatory activity in the mechanisms underlying higher-order human cognition.
Santarnecchi, E., Polizzotto, N.R., Godone, M., Giovannelli, F., Feurra, M., Matzen, L., et al. (2013). Frequency-dependent enhancement of fluid intelligence induced by transcranial oscillatory potentials. CURRENT BIOLOGY, 23(15), 1449-1453 [10.1016/j.cub.2013.06.022].
Frequency-dependent enhancement of fluid intelligence induced by transcranial oscillatory potentials
Santarnecchi E.;Rossi A.;Rossi S.
2013-01-01
Abstract
Everyday problem solving requires the ability to go beyond experience by efficiently encoding and manipulating new information, i.e., fluid intelligence (Gf) [1]. Performance in tasks involving Gf, such as logical and abstract reasoning, has been shown to rely on distributed neural networks, with a crucial role played by prefrontal regions [2]. Synchronization of neuronal activity in the gamma band is a ubiquitous phenomenon within the brain; however, no evidence of its causal involvement in cognition exists to date [3]. Here, we show an enhancement of Gf ability in a cognitive task induced by exogenous rhythmic stimulation within the gamma band. Imperceptible alternating current [4] delivered through the scalp over the left middle frontal gyrus resulted in a frequency-specific shortening of the time required to find the correct solution in a visuospatial abstract reasoning task classically employed to measure Gf abilities (i.e., Raven's matrices) [5]. Crucially, gamma-band stimulation (γ-tACS) selectively enhanced performance only on more complex trials involving conditional/logical reasoning. The present finding supports a direct involvement of gamma oscillatory activity in the mechanisms underlying higher-order human cognition.File | Dimensione | Formato | |
---|---|---|---|
Frequency-Dependent-Enhancement-2013.pdf
non disponibili
Descrizione: Articolo
Tipologia:
PDF editoriale
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
707.61 kB
Formato
Adobe PDF
|
707.61 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11365/46503
Attenzione
Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo