Let X be a smooth variety of dimension n and degree d. There is a well-known conjecture concerning the k-regularity, saying that X is k-regular if k> d-r+n. We prove that X is k-regular if k > d-r+n+ (n-2)(n-1)/2 when n >3 (or, more generally, when X admits a general projection in P^n which is "good"), recovering the known results for curves, surfaces, threefolds (when r > 5), and improving the known results for fourfolds and higher dimensional varieties of codimension > 2.

Chiantini, L., Chianli, N., Greco, S. (2000). Bounding Castelnuovo-Mumford Regularity for Varieties with Good General Projection. JOURNAL OF PURE AND APPLIED ALGEBRA, 152, 57-64 [10.1016/S0022-4049(99)00126-7].

Bounding Castelnuovo-Mumford Regularity for Varieties with Good General Projection

CHIANTINI, LUCA;
2000-01-01

Abstract

Let X be a smooth variety of dimension n and degree d. There is a well-known conjecture concerning the k-regularity, saying that X is k-regular if k> d-r+n. We prove that X is k-regular if k > d-r+n+ (n-2)(n-1)/2 when n >3 (or, more generally, when X admits a general projection in P^n which is "good"), recovering the known results for curves, surfaces, threefolds (when r > 5), and improving the known results for fourfolds and higher dimensional varieties of codimension > 2.
Chiantini, L., Chianli, N., Greco, S. (2000). Bounding Castelnuovo-Mumford Regularity for Varieties with Good General Projection. JOURNAL OF PURE AND APPLIED ALGEBRA, 152, 57-64 [10.1016/S0022-4049(99)00126-7].
File in questo prodotto:
File Dimensione Formato  
2000.CMreg.pdf

non disponibili

Tipologia: Post-print
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 85.62 kB
Formato Adobe PDF
85.62 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11365/45829
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo