The paper deals with the problem of the existence of a branch of T−periodic solutions originating from the isolated limit cycle of an autonomous parabolic equation in a Banach space when it is perturbed by a nonlinear T−periodic term of small amplitude. We solve this problem by first introducing a novel integral operator, whose fixed points are T−periodic solutions of the considered equation and vice versa. Then we compute the Malkin bifurcation function associated to this integral operator and we provide conditions under which the well-known assumption of the existence of a simple zero of the Malkin bifurcation function guarantees the existence of the branch.

M., K., B., M., Nistri, P. (2013). A bifurcation problem for a class of periodically perturbed autonomous parabolic equations. BOUNDARY VALUE PROBLEMS, 2013:101, 1-18 [10.1186/1687-2770-2013-101].

A bifurcation problem for a class of periodically perturbed autonomous parabolic equations

NISTRI, PAOLO
2013-01-01

Abstract

The paper deals with the problem of the existence of a branch of T−periodic solutions originating from the isolated limit cycle of an autonomous parabolic equation in a Banach space when it is perturbed by a nonlinear T−periodic term of small amplitude. We solve this problem by first introducing a novel integral operator, whose fixed points are T−periodic solutions of the considered equation and vice versa. Then we compute the Malkin bifurcation function associated to this integral operator and we provide conditions under which the well-known assumption of the existence of a simple zero of the Malkin bifurcation function guarantees the existence of the branch.
2013
M., K., B., M., Nistri, P. (2013). A bifurcation problem for a class of periodically perturbed autonomous parabolic equations. BOUNDARY VALUE PROBLEMS, 2013:101, 1-18 [10.1186/1687-2770-2013-101].
File in questo prodotto:
File Dimensione Formato  
n.104.pdf

non disponibili

Tipologia: Post-print
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 385.35 kB
Formato Adobe PDF
385.35 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11365/45759
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo