The paper deals with the problem of the existence of a branch of T−periodic solutions originating from the isolated limit cycle of an autonomous parabolic equation in a Banach space when it is perturbed by a nonlinear T−periodic term of small amplitude. We solve this problem by first introducing a novel integral operator, whose fixed points are T−periodic solutions of the considered equation and vice versa. Then we compute the Malkin bifurcation function associated to this integral operator and we provide conditions under which the well-known assumption of the existence of a simple zero of the Malkin bifurcation function guarantees the existence of the branch.
M., K., B., M., Nistri, P. (2013). A bifurcation problem for a class of periodically perturbed autonomous parabolic equations. BOUNDARY VALUE PROBLEMS, 2013:101, 1-18 [10.1186/1687-2770-2013-101].
A bifurcation problem for a class of periodically perturbed autonomous parabolic equations
NISTRI, PAOLO
2013-01-01
Abstract
The paper deals with the problem of the existence of a branch of T−periodic solutions originating from the isolated limit cycle of an autonomous parabolic equation in a Banach space when it is perturbed by a nonlinear T−periodic term of small amplitude. We solve this problem by first introducing a novel integral operator, whose fixed points are T−periodic solutions of the considered equation and vice versa. Then we compute the Malkin bifurcation function associated to this integral operator and we provide conditions under which the well-known assumption of the existence of a simple zero of the Malkin bifurcation function guarantees the existence of the branch.File | Dimensione | Formato | |
---|---|---|---|
n.104.pdf
non disponibili
Tipologia:
Post-print
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
385.35 kB
Formato
Adobe PDF
|
385.35 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11365/45759
Attenzione
Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo