In this paper we investigate linear error correcting codes and projective caps related to the Grassmann embedding $\varepsilon_k^{gr}$ of an orthogonal Grassmannian $\Delta_k$. In particular, we determine some of the parameters of the codes arising from the projective system determined by $\varepsilon_k^{gr}(\Delta_k)$. We also study special sets of points of $\Delta_k$ which are met by any line of $\Delta_k$ in at most $2$ points and we show that their image under the Grassmann embedding $\varepsilon_k^{gr}$ is a projective cap.
Cardinali, I., Giuzzi, L. (2013). Codes and caps from orthogonal Grassmannians. FINITE FIELDS AND THEIR APPLICATIONS, 24, 148-169 [10.1016/j.ffa.2013.07.003].
Codes and caps from orthogonal Grassmannians
CARDINALI, ILARIA;
2013-01-01
Abstract
In this paper we investigate linear error correcting codes and projective caps related to the Grassmann embedding $\varepsilon_k^{gr}$ of an orthogonal Grassmannian $\Delta_k$. In particular, we determine some of the parameters of the codes arising from the projective system determined by $\varepsilon_k^{gr}(\Delta_k)$. We also study special sets of points of $\Delta_k$ which are met by any line of $\Delta_k$ in at most $2$ points and we show that their image under the Grassmann embedding $\varepsilon_k^{gr}$ is a projective cap.File | Dimensione | Formato | |
---|---|---|---|
polar-caps-ffa-p-revised.pdf
non disponibili
Tipologia:
Pre-print
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
295.21 kB
Formato
Adobe PDF
|
295.21 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11365/45495
Attenzione
Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo