Let νd : Pr → PN, denote the degree d Veronese embedding of Pr. For any P ∈ PN, the symmetric tensor rank sr(P) is the minimal cardinality of a set S ⊂ νd(Pr) spanning P. Let S(P) be the set of all A ⊂ Pr such that νd(A) computes sr(P). Here we classify all P ∈ Pn such that sr(P) < 3d/2 and sr(P) is computed by at least two subsets of νd(Pr). For such tensors P ∈ PN, we prove that S(P) has no isolated points.
Ballico, E., Chiantini, L. (2013). Sets computing the symmetric tensor rank. MEDITERRANEAN JOURNAL OF MATHEMATICS, 10(2), 643-654 [10.1007/s00009-012-0214-4].
Sets computing the symmetric tensor rank
Chiantini L.
2013-01-01
Abstract
Let νd : Pr → PN, denote the degree d Veronese embedding of Pr. For any P ∈ PN, the symmetric tensor rank sr(P) is the minimal cardinality of a set S ⊂ νd(Pr) spanning P. Let S(P) be the set of all A ⊂ Pr such that νd(A) computes sr(P). Here we classify all P ∈ Pn such that sr(P) < 3d/2 and sr(P) is computed by at least two subsets of νd(Pr). For such tensors P ∈ PN, we prove that S(P) has no isolated points.File | Dimensione | Formato | |
---|---|---|---|
2013.Symtens.pdf
non disponibili
Tipologia:
Post-print
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
305.71 kB
Formato
Adobe PDF
|
305.71 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11365/44524
Attenzione
Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo