Let νd : Pr → PN, denote the degree d Veronese embedding of Pr. For any P ∈ PN, the symmetric tensor rank sr(P) is the minimal cardinality of a set S ⊂ νd(Pr) spanning P. Let S(P) be the set of all A ⊂ Pr such that νd(A) computes sr(P). Here we classify all P ∈ Pn such that sr(P) < 3d/2 and sr(P) is computed by at least two subsets of νd(Pr). For such tensors P ∈ PN, we prove that S(P) has no isolated points.

Ballico, E., & Chiantini, L. (2013). Sets computing the symmetric tensor rank. MEDITERRANEAN JOURNAL OF MATHEMATICS, 10(2), 643-654 [10.1007/s00009-012-0214-4].

Sets computing the symmetric tensor rank.

CHIANTINI, LUCA
2013

Abstract

Let νd : Pr → PN, denote the degree d Veronese embedding of Pr. For any P ∈ PN, the symmetric tensor rank sr(P) is the minimal cardinality of a set S ⊂ νd(Pr) spanning P. Let S(P) be the set of all A ⊂ Pr such that νd(A) computes sr(P). Here we classify all P ∈ Pn such that sr(P) < 3d/2 and sr(P) is computed by at least two subsets of νd(Pr). For such tensors P ∈ PN, we prove that S(P) has no isolated points.
File in questo prodotto:
File Dimensione Formato  
2013.Symtens.pdf

non disponibili

Tipologia: Post-print
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 305.71 kB
Formato Adobe PDF
305.71 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11365/44524
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo