The origin of the zygotic centrosome is an important step in developmental biology. It is generally thought that sperm at fertilization plays a central role in forming the functional centrosome which subsequently organizes the first mitotic spindle. However, this view is not applicable in the case of parthenogenetic eggs which develop without the sperm contribution. To clarify the problem of the origin of the zygotic centrosome during parthenogenetic development, we studied a hymenopteran, Muscidifurax uniraptor. Antitubulin antibody revealed that after activation several asters assembled in the egg cytoplasm. The number of asters varied in relation to the cell cycle. They became visible from anaphase of the first meiotic division and increased in number as meiosis progressed, reaching a maximum at the first mitosis. From anaphase-telophase of the first mitosis they decreased in number and were no longer found during the third mitotic division. To elucidate the nature of these asters we performed an ultrastructural study with transmission electron microscopy and immunofluorescence with antibodies against anti-γ-tubulin and CP190. In this way we showed the presence in these asters of centrosomal components and centrioles. Our observations suggest that the cytoplasm of Muscidifurax eggs contains a pool of inactive centrosomal precursor proteins becoming able to nucleate microtubules into well-defined asters containing centrioles after activation.
Riparbelli, M.G., Stouthamer, R., Dallai, R., Callaini, G. (1998). Microtubule organization during the early development of the parthenogenetic egg of the hymenopteran Muscidifurax uniraptor. DEVELOPMENTAL BIOLOGY, 195(2), 89-99 [10.1006/dbio.1997.8841].
Microtubule organization during the early development of the parthenogenetic egg of the hymenopteran Muscidifurax uniraptor
RIPARBELLI M. G.;DALLAI R.;CALLAINI G.
1998-01-01
Abstract
The origin of the zygotic centrosome is an important step in developmental biology. It is generally thought that sperm at fertilization plays a central role in forming the functional centrosome which subsequently organizes the first mitotic spindle. However, this view is not applicable in the case of parthenogenetic eggs which develop without the sperm contribution. To clarify the problem of the origin of the zygotic centrosome during parthenogenetic development, we studied a hymenopteran, Muscidifurax uniraptor. Antitubulin antibody revealed that after activation several asters assembled in the egg cytoplasm. The number of asters varied in relation to the cell cycle. They became visible from anaphase of the first meiotic division and increased in number as meiosis progressed, reaching a maximum at the first mitosis. From anaphase-telophase of the first mitosis they decreased in number and were no longer found during the third mitotic division. To elucidate the nature of these asters we performed an ultrastructural study with transmission electron microscopy and immunofluorescence with antibodies against anti-γ-tubulin and CP190. In this way we showed the presence in these asters of centrosomal components and centrioles. Our observations suggest that the cytoplasm of Muscidifurax eggs contains a pool of inactive centrosomal precursor proteins becoming able to nucleate microtubules into well-defined asters containing centrioles after activation.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11365/436116
Attenzione
Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo