Horčík and Terui [8] show that, if a substructural logic enjoys the disjunction property, then its tautology problem is PSPACE-hard. We prove that all substructural logics in the interval between intuitionistic logic and generalized Hájek basic logic have a PSPACE-hard tautology problem, which implies that uncountably many substructural logics lacking the disjunction property have a PSPACE-hard tautology problem.

Simone, B., Montagna, F. (2013). Polynomial space hardness without disjunction property. THEORETICAL COMPUTER SCIENCE, 467, 1-11 [10.1016/j.tcs.2012.08.025].

Polynomial space hardness without disjunction property

MONTAGNA, FRANCO
2013-01-01

Abstract

Horčík and Terui [8] show that, if a substructural logic enjoys the disjunction property, then its tautology problem is PSPACE-hard. We prove that all substructural logics in the interval between intuitionistic logic and generalized Hájek basic logic have a PSPACE-hard tautology problem, which implies that uncountably many substructural logics lacking the disjunction property have a PSPACE-hard tautology problem.
2013
Simone, B., Montagna, F. (2013). Polynomial space hardness without disjunction property. THEORETICAL COMPUTER SCIENCE, 467, 1-11 [10.1016/j.tcs.2012.08.025].
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11365/43146
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo