The interaction of traveling waves, with both Marangoni and buoyancy driven flows, can generate an extraordinary rich array of patterns ranging from stationary structures to chaotic waves. However, the inherent complexity of reaction-diffusion-convection (RDC) systems makes the explanation of the patterning mechanisms very difficult, both numerically and experimentally. In this paper, we describe the appearance of segmented waves in a shallow layer of an excitable Belousov-Zhabotinsky solution. The segmentation process was found to be dependent both on the depth of the solution and on the excitability of the reaction. We caught the essential features of the system through a RDC model, where the chemical waves were coupled both with surface and bulk fluid motions and we found that by varying the excitability of the reaction, and in turn the wavelength of the chemical fronts, it is possible to create a sort of hydrodynamic resonance structures (corridors), which are responsible for the segmentation process.

Rossi, F., Budroni, M.A., Marchettini, N., Carballido-Landeira, J. (2012). Segmented waves in a reaction-diffusion-convection system. CHAOS, 22(3) [10.1063/1.4752194].

Segmented waves in a reaction-diffusion-convection system

Rossi, F.;Marchettini, N.;
2012-01-01

Abstract

The interaction of traveling waves, with both Marangoni and buoyancy driven flows, can generate an extraordinary rich array of patterns ranging from stationary structures to chaotic waves. However, the inherent complexity of reaction-diffusion-convection (RDC) systems makes the explanation of the patterning mechanisms very difficult, both numerically and experimentally. In this paper, we describe the appearance of segmented waves in a shallow layer of an excitable Belousov-Zhabotinsky solution. The segmentation process was found to be dependent both on the depth of the solution and on the excitability of the reaction. We caught the essential features of the system through a RDC model, where the chemical waves were coupled both with surface and bulk fluid motions and we found that by varying the excitability of the reaction, and in turn the wavelength of the chemical fronts, it is possible to create a sort of hydrodynamic resonance structures (corridors), which are responsible for the segmentation process.
2012
Rossi, F., Budroni, M.A., Marchettini, N., Carballido-Landeira, J. (2012). Segmented waves in a reaction-diffusion-convection system. CHAOS, 22(3) [10.1063/1.4752194].
File in questo prodotto:
File Dimensione Formato  
2012 - Rossi et al - Chaos.pdf

non disponibili

Tipologia: Post-print
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 3.11 MB
Formato Adobe PDF
3.11 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11365/42422
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo