We prove a criterion for the identifiability of symmetric tensors P of type 3x...x3 (d times), whose rank k is bounded by (d^2+2d)/8. The criterion is based on the study of the Hilbert function of a set of points P_1,..., P_k which computes the rank of the tensor P.

Ballico, E., Chiantini, L. (2012). A criterion for detecting the identifiability of symmetric tensors of size three. DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 30, 233-237 [10.1016/j.difgeo.2012.04.004].

A criterion for detecting the identifiability of symmetric tensors of size three

CHIANTINI, LUCA
2012-01-01

Abstract

We prove a criterion for the identifiability of symmetric tensors P of type 3x...x3 (d times), whose rank k is bounded by (d^2+2d)/8. The criterion is based on the study of the Hilbert function of a set of points P_1,..., P_k which computes the rank of the tensor P.
Ballico, E., Chiantini, L. (2012). A criterion for detecting the identifiability of symmetric tensors of size three. DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 30, 233-237 [10.1016/j.difgeo.2012.04.004].
File in questo prodotto:
File Dimensione Formato  
2012.Criter.pdf

non disponibili

Tipologia: Post-print
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 129.05 kB
Formato Adobe PDF
129.05 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11365/41454
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo