Total concentrations of Al, Ba, Cd, Co, Cr, Cu, Fe, Mn, Mo, Pb, Sr, Ti, V and Zn in the epiphytic lichen Parmelia sulcata and superficial soils from 60 remote sampling sites in Tuscany (central Italy) were determined to evaluate the contribution of soil to the elemental composition of the lichen. The results showed that in the Mediterranean environment, the trace element content of unwashed lichen samples is greatly affected by soil contamination. However, despite the strong correlations between the concentrations of lithogene elements such as Al, Fe and Ti in P. sulcata, lichen levels of these elements were not at all linearly correlated with their concentrations in the soil, suggesting that dust contamination is highly variable and probably dependent on local site characteristics. All methods evaluated to minimize soil contamination indicated Cu, Pb and Zn as elements of atmospheric origin. However, while levels of Pb were similar to those reported for background areas, moderate pollution by Cu and Zn, probably from fertilizers used in agriculture, was revealed. For elements such as Cd and Mo, identified as atmophile, some uncertainty exists due to the fact that they are essential for lichen metabolism and accumulate intracellularly in lichens; they may therefore occur in soluble form in the lichen thallus.

Loppi, S., Pirintsos, S.A., & De Dominicis, V. (1999). Soil contribution to the elemental composition of epiphytic lichens (Tuscany, central Italy). ENVIRONMENTAL MONITORING AND ASSESSMENT, 58(2), 121-131 [10.1023/A:1006047431210].

Soil contribution to the elemental composition of epiphytic lichens (Tuscany, central Italy)

Loppi, S.;De Dominicis, V.
1999

Abstract

Total concentrations of Al, Ba, Cd, Co, Cr, Cu, Fe, Mn, Mo, Pb, Sr, Ti, V and Zn in the epiphytic lichen Parmelia sulcata and superficial soils from 60 remote sampling sites in Tuscany (central Italy) were determined to evaluate the contribution of soil to the elemental composition of the lichen. The results showed that in the Mediterranean environment, the trace element content of unwashed lichen samples is greatly affected by soil contamination. However, despite the strong correlations between the concentrations of lithogene elements such as Al, Fe and Ti in P. sulcata, lichen levels of these elements were not at all linearly correlated with their concentrations in the soil, suggesting that dust contamination is highly variable and probably dependent on local site characteristics. All methods evaluated to minimize soil contamination indicated Cu, Pb and Zn as elements of atmospheric origin. However, while levels of Pb were similar to those reported for background areas, moderate pollution by Cu and Zn, probably from fertilizers used in agriculture, was revealed. For elements such as Cd and Mo, identified as atmophile, some uncertainty exists due to the fact that they are essential for lichen metabolism and accumulate intracellularly in lichens; they may therefore occur in soluble form in the lichen thallus.
Loppi, S., Pirintsos, S.A., & De Dominicis, V. (1999). Soil contribution to the elemental composition of epiphytic lichens (Tuscany, central Italy). ENVIRONMENTAL MONITORING AND ASSESSMENT, 58(2), 121-131 [10.1023/A:1006047431210].
File in questo prodotto:
File Dimensione Formato  
76915_UPLOAD.pdf

non disponibili

Tipologia: PDF editoriale
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 83.58 kB
Formato Adobe PDF
83.58 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11365/413942