The main lesion in Parkinson disease (PD) is loss of substantia nigra dopaminergic neurons. Levodopa (L-DOPA) is the most widely used therapy, but it does not arrest disease progression. Some possible contributing factors to the continuing neuronal loss are oxidative stress, including oxidation of L-DOPA, and neurotoxins generated by locally activated microglia and astrocytes. A possible method of reducing these factors is to produce L-DOPA hybrid compounds that have antioxidant and antiinflammatory properties. Here we demonstrate the properties of four such L-DOPA hybrids based on coupling L-DOPA to four different hydrogen sulfide-donating compounds. The donors themselves were shown to be capable of conversion by isolated mitochondria to H2S or equivalent SH- ions. This capability was confirmed by in vivo results, showing a large increase in intracerebral dopamine and glutathione after iv administration in rats. When human microglia, astrocytes, and SH-SY5Y neuroblastoma cells were treated with these donating agents, they all accumulated H2S intracellularly as did their derivatives coupled to L-DOPA. The donating agents and the L-DOPA hybrids reduced the release of tumor necrosis factor-α, interleukin-6, and nitric oxide from stimulated microglia, astrocytes as well as the THP-1 and U373 cell lines. They also demonstrated a neuroprotective effect by reducing the toxicity of supernatants from these stimulated cells to SH-SY5Y cells. L-DOPA itself was without effect in any of these assays. The H2S-releasing L-DOPA hybrid molecules also inhibited MAO B activity. They may be useful for the treatment of PD because of their significant antiinflammatory, antioxidant, and neuroprotective properties.

Lee, M., Tazzari, V., Giustarini, D., Rossi, R., Sparatore, A., DEL SOLDATO, P., et al. (2010). Effects of hydrogen sulfide-releasing L-DOPA derivatives on glial activation: potential for treating Parkinson disease. THE JOURNAL OF BIOLOGICAL CHEMISTRY, 285(23), 17318-17328 [10.1074/jbc.M110.115261].

Effects of hydrogen sulfide-releasing L-DOPA derivatives on glial activation: potential for treating Parkinson disease

GIUSTARINI D;ROSSI, RANIERI;
2010-01-01

Abstract

The main lesion in Parkinson disease (PD) is loss of substantia nigra dopaminergic neurons. Levodopa (L-DOPA) is the most widely used therapy, but it does not arrest disease progression. Some possible contributing factors to the continuing neuronal loss are oxidative stress, including oxidation of L-DOPA, and neurotoxins generated by locally activated microglia and astrocytes. A possible method of reducing these factors is to produce L-DOPA hybrid compounds that have antioxidant and antiinflammatory properties. Here we demonstrate the properties of four such L-DOPA hybrids based on coupling L-DOPA to four different hydrogen sulfide-donating compounds. The donors themselves were shown to be capable of conversion by isolated mitochondria to H2S or equivalent SH- ions. This capability was confirmed by in vivo results, showing a large increase in intracerebral dopamine and glutathione after iv administration in rats. When human microglia, astrocytes, and SH-SY5Y neuroblastoma cells were treated with these donating agents, they all accumulated H2S intracellularly as did their derivatives coupled to L-DOPA. The donating agents and the L-DOPA hybrids reduced the release of tumor necrosis factor-α, interleukin-6, and nitric oxide from stimulated microglia, astrocytes as well as the THP-1 and U373 cell lines. They also demonstrated a neuroprotective effect by reducing the toxicity of supernatants from these stimulated cells to SH-SY5Y cells. L-DOPA itself was without effect in any of these assays. The H2S-releasing L-DOPA hybrid molecules also inhibited MAO B activity. They may be useful for the treatment of PD because of their significant antiinflammatory, antioxidant, and neuroprotective properties.
2010
Lee, M., Tazzari, V., Giustarini, D., Rossi, R., Sparatore, A., DEL SOLDATO, P., et al. (2010). Effects of hydrogen sulfide-releasing L-DOPA derivatives on glial activation: potential for treating Parkinson disease. THE JOURNAL OF BIOLOGICAL CHEMISTRY, 285(23), 17318-17328 [10.1074/jbc.M110.115261].
File in questo prodotto:
File Dimensione Formato  
2010 Lee JBC.pdf

accesso aperto

Tipologia: PDF editoriale
Licenza: PUBBLICO - Pubblico con Copyright
Dimensione 2.15 MB
Formato Adobe PDF
2.15 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11365/411745