Attenzione: i dati modificati non sono ancora stati salvati. Per confermare inserimenti o cancellazioni di voci è necessario confermare con il tasto SALVA/INSERISCI in fondo alla pagina
IRIS
For comparison of inclusive jet cross sections measured at hadron-hadron colliders to next-to-leading order (NLO) parton-level calculations, the energy deposited in the jet cone by spectator parton interactions must first be subtracted. The assumption made at the Tevatron is that the spectator parton interaction energy is similar to the ambient level measured in minimum bias events. In this paper, we test this assumption by measuring the ambient charged track momentum in events containing large transverse energy jets at roots=1800 GeV and roots=630 GeV and comparing this ambient momentum with that observed both in minimum bias events and with that predicted by two Monte Carlo models. Two cones in eta-phi space are defined, at the same pseudorapidity, eta, as the jet with the highest transverse energy (E(T)((1))), and at +/-90(o) in the azimuthal direction, phi. The total charged track momentum inside each of the two cones is measured. The minimum momentum in the two cones is almost independent of E(T)((1)) and is similar to the momentum observed in minimum bias events, whereas the maximum momentum increases roughly linearly with the jet E(T)((1)) over most of the measured range. This study was carried out using data from the CDF detector taken during Run 1 (1994-1995). The study will help improve the precision of comparisons of jet cross section data and NLO perturbative QCD predictions. The distribution of the sum of the track momenta in the two cones is also examined for five different E(T)((1)) bins. The HERWIG and PYTHIA Monte Carlo generators are reasonably successful in describing the data, but neither can describe completely all of the event properties.
D., A., T., A., M. G., A., D., A., D., A., K., A., et al. (2004). Underlying event in hard interactions at the Fermilab Tevatron p(p)over-barp collider. PHYSICAL REVIEW. D. PARTICLES, FIELDS, GRAVITATION, AND COSMOLOGY, 70(7) [10.1103/PhysRevD.70.072002].
Underlying event in hard interactions at the Fermilab Tevatron p(p)over-barp collider
D. Acosta;T. Affolder;M. G. Albrow;D. Ambrose;D. Amidei;K. Anikeev;J. Antos;G. Apollinari;T. Arisawa;A. Artikov;W. Ashmanskas;F. Azfar;P. Azzi Bacchetta;N. Bacchetta;H. Bachacou;W. Badgett;A. Barbaro Galtieri;V. E. Barnes;B. A. Barnett;S. Baroiant;M. Barone;G. Bauer;F. Bedeschi;S. Behari;S. Belforte;W. H. Bell;G. Bellettini;J. Bellinger;D. Benjamin;A. Beretvas;A. Bhatti;M. Binkley;D. Bisello;M. Bishai;R. E. Blair;C. Blocker;K. Bloom;B. Blumenfeld;A. Bocci;A. Bodek;G. Bolla;A. Bolshov;D. Bortoletto;J. Boudreau;C. Bromberg;E. Brubaker;J. Budagov;H. S. Budd;K. Burkett;G. Busetto;K. L. Byrum;S. Cabrera;M. Campbell;W. Carithers;D. Carlsmith;A. Castro;D. Cauz;A. Cerri;L. Cerrito;J. Chapman;C. Chen;Y. C. Chen;M. Chertok;G. Chiarelli;G. Chlachidze;F. Chlebana;M. L. Chu;J. Y. Chung;W. H. Chung;Y. S. Chung;C. I. Ciobanu;A. G. Clark;M. Coca;A. Connolly;M. Convery;J. Conway;M. Cordelli;J. Cranshaw;R. Culbertson;D. Dagenhart;S. D'Auria;P. d. Barbaro;S. D. Cecco;S. Dell'Agnello;M. Dell'Orso;S. Demers;L. Demortier;M. Deninno;D. D. Pedis;P. F. Derwent;C. Dionisi;J. R. Dittmann;A. Dominguez;S. Donati;M. D'Onofrio;T. Dorigo;N. Eddy;R. Erbacher;D. Errede;S. Errede;R. Eusebi;S. Farrington;R. G. Feild;J. P. Fernandez;C. Ferretti;R. D. Field;I. Fiori;B. Flaugher;L. R. Flores Castillo;G. W. Foster;M. Franklin;J. Friedman;I. Furic;M. Gallinaro;M. Garcia Sciveres;A. F. Garfinkel;C. Gay;D. W. Gerdes;E. Gerstein;S. Giagu;P. Giannetti;K. Giolo;M. Giordani;P. Giromini;V. Glagolev;D. Glenzinski;M. Gold;N. Goldschmidt;J. Goldstein;G. Gomez;M. Goncharov;I. Gorelov;A. T. Goshaw;Y. Gotra;K. Goulianos;A. Gresele;C. Grosso Pilcher;M. Guenther;J. G. da;C. Haber;S. R. Hahn;E. Halkiadakis;R. Handler;F. Happacher;K. Hara;R. M. Harris;F. Hartmann;K. Hatakeyama;J. Hauser;J. Heinrich;M. Hennecke;M. Herndon;C. Hill;A. Hocker;K. D. Hoffman;S. Hou;B. T. Huffman;R. Hughes;J. Huston;C. Issever;J. Incandela;G. Introzzi;M. Iori;A. Ivanov;Y. Iwata;B. Iyutin;E. James;M. Jones;T. Kamon;J. Kang;M. K. Unel;S. Kartal;H. Kasha;Y. Kato;R. D. Kennedy;R. Kephart;B. Kilminster;D. H. Kim;H. S. Kim;M. J. Kim;S. B. Kim;S. H. Kim;T. H. Kim;Y. K. Kim;M. Kirby;L. Kirsch;S. Klimenko;P. Koehn;K. Kondo;J. Konigsberg;A. Korn;A. Korytov;J. Kroll;M. Kruse;V. Krutelyov;S. E. Kuhlmann;N. Kuznetsova;A. T. Laasanen;S. Lami;S. Lammel;J. Lancaster;K. Lannon;M. Lancaster;R. Lander;A. Lath;G. Latino;T. LeCompte;Y. Le;J. Lee;S. W. Lee;N. Leonardo;S. Leone;J. D. Lewis;K. Li;C. S. Lin;M. Lindgren;T. M. Liss;T. Liu;D. O. Litvintsev;N. S. Lockyer;A. Loginov;M. Loreti;D. Lucchesi;P. Lukens;L. Lyons;J. Lys;R. Madrak;K. Maeshima;P. Maksimovic;L. Malferrari;M. Mangano;G. Manca;M. Mariotti;M. Martin;A. Martin;V. Martin;M. Martinez;P. Mazzanti;K. S. McFarland;P. McIntyre;M. Menguzzato;A. Menzione;P. Merkel;C. Mesropian;A. Meyer;T. Miao;R. Miller;J. S. Miller;S. Miscetti;G. Mitselmakher;N. Moggi;R. Moore;T. Moulik;M. Mulhearn;A. Mukherjee;T. Muller;A. Munar;P. Murat;J. Nachtman;S. Nahn;I. Nakano;R. Napora;F. Niell;C. Nelson;T. Nelson;C. Neu;M. S. Neubauer;C. Newman Holmes;T. Nigmanov;L. Nodulman;S. H. Oh;Y. D. Oh;T. Ohsugi;T. Okusawa;W. Orejudos;C. Pagliarone;F. Palmonari;PAOLETTI, RICCARDO;V. Papadimitriou;J. Patrick;G. Pauletta;M. Paulini;T. Pauly;C. Paus;D. Pellett;A. Penzo;T. J. Phillips;G. Piacentino;J. Piedra;K. T. Pitts;A. Pompos;L. Pondrom;G. Pope;T. Pratt;F. Prokoshin;J. Proudfoot;F. Ptohos;O. Poukhov;G. Punzi;J. Rademacker;A. Rakitine;F. Ratnikov;H. Ray;A. Reichold;P. Renton;M. Rescigno;F. Rimondi;L. Ristori;W. J. Robertson;T. Rodrigo;S. Rolli;L. Rosenson;R. Roser;R. Rossin;C. Rott;A. Roy;A. Ruiz;D. Ryan;A. Safonov;R. S. Denis;W. K. Sakumoto;D. Saltzberg;C. Sanchez;A. Sansoni;L. Santi;S. Sarkar;P. Savard;A. Savoy Navarro;P. Schlabach;E. E. Schmidt;M. P. Schmidt;M. Schmitt;L. Scodellaro;A. Scribano;A. Sefov;S. Seidel;Y. Seiya;A. Semenov;F. Semeria;M. D. Shapiro;P. F. Shepard;T. Shibayama;M. Shimojima;M. Shochet;A. Sidoti;A. Sill;P. Sinervo;A. J. Slaughter;K. Sliwa;F. D. Snider;R. Snihur;M. Spezziga;F. Spinella;M. Spiropulu;L. Spiegel;A. Stefanini;J. Strologas;D. Stuart;A. Sukhanov;K. Sumorok;T. Suzuki;R. Takashima;K. Takikawa;M. Tanaka;V. Tano;M. Tecchio;R. J. Tesarek;P. K. Teng;K. Terashi;S. Tether;J. Thom;A. S. Thompson;E. Thomson;P. Tipton;S. Tkaczyk;D. Toback;K. Tollefson;D. Tonelli;M. Tonnesmann;H. Toyoda;W. Trischuk;J. Tseng;D. Tsybychev;N. Turini;F. Ukegawa;T. Unverhau;T. Vaiciulis;A. Varganov;E. Vataga;S. Vejcik;G. Velev;G. Veramendi;R. Vidal;I. Vila;R. Vilar;I. Volobouev;M. v. der;R. G. Wagner;R. L. Wagner;W. Wagner;Z. Wan;C. Wang;M. J. Wang;S. M. Wang;B. Ward;S. Waschke;D. Waters;T. Watts;M. Weber;W. C. Wester;B. Whitehouse;A. B. Wicklund;E. Wicklund;H. H. Williams;P. Wilson;B. L. Winer;S. Wolbers;M. Wolter;S. Worm;X. Wu;F. Wurthwein;U. K. Yang;W. Yao;G. P. Yeh;K. Yi;J. Yoh;T. Yoshida;I. Yu;S. Yu;J. C. Yun;L. Zanello;A. Zanetti;F. Zetti;S. Zucchelli
2004-01-01
Abstract
For comparison of inclusive jet cross sections measured at hadron-hadron colliders to next-to-leading order (NLO) parton-level calculations, the energy deposited in the jet cone by spectator parton interactions must first be subtracted. The assumption made at the Tevatron is that the spectator parton interaction energy is similar to the ambient level measured in minimum bias events. In this paper, we test this assumption by measuring the ambient charged track momentum in events containing large transverse energy jets at roots=1800 GeV and roots=630 GeV and comparing this ambient momentum with that observed both in minimum bias events and with that predicted by two Monte Carlo models. Two cones in eta-phi space are defined, at the same pseudorapidity, eta, as the jet with the highest transverse energy (E(T)((1))), and at +/-90(o) in the azimuthal direction, phi. The total charged track momentum inside each of the two cones is measured. The minimum momentum in the two cones is almost independent of E(T)((1)) and is similar to the momentum observed in minimum bias events, whereas the maximum momentum increases roughly linearly with the jet E(T)((1)) over most of the measured range. This study was carried out using data from the CDF detector taken during Run 1 (1994-1995). The study will help improve the precision of comparisons of jet cross section data and NLO perturbative QCD predictions. The distribution of the sum of the track momenta in the two cones is also examined for five different E(T)((1)) bins. The HERWIG and PYTHIA Monte Carlo generators are reasonably successful in describing the data, but neither can describe completely all of the event properties.
D., A., T., A., M. G., A., D., A., D., A., K., A., et al. (2004). Underlying event in hard interactions at the Fermilab Tevatron p(p)over-barp collider. PHYSICAL REVIEW. D. PARTICLES, FIELDS, GRAVITATION, AND COSMOLOGY, 70(7) [10.1103/PhysRevD.70.072002].
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11365/39305
Attenzione
Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo
Conferma cancellazione
Sei sicuro che questo prodotto debba essere cancellato?
simulazione ASN
Il report seguente simula gli indicatori relativi alla propria produzione scientifica in relazione alle soglie ASN 2023-2025 del proprio SC/SSD. Si ricorda che il superamento dei valori soglia (almeno 2 su 3) è requisito necessario ma non sufficiente al conseguimento dell'abilitazione. La simulazione si basa sui dati IRIS e sugli indicatori bibliometrici alla data indicata e non tiene conto di eventuali periodi di congedo obbligatorio, che in sede di domanda ASN danno diritto a incrementi percentuali dei valori. La simulazione può differire dall'esito di un’eventuale domanda ASN sia per errori di catalogazione e/o dati mancanti in IRIS, sia per la variabilità dei dati bibliometrici nel tempo. Si consideri che Anvur calcola i valori degli indicatori all'ultima data utile per la presentazione delle domande.
La presente simulazione è stata realizzata sulla base delle specifiche raccolte sul tavolo ER del Focus Group IRIS coordinato dall’Università di Modena e Reggio Emilia e delle regole riportate nel DM 589/2018 e allegata Tabella A. Cineca, l’Università di Modena e Reggio Emilia e il Focus Group IRIS non si assumono alcuna responsabilità in merito all’uso che il diretto interessato o terzi faranno della simulazione. Si specifica inoltre che la simulazione contiene calcoli effettuati con dati e algoritmi di pubblico dominio e deve quindi essere considerata come un mero ausilio al calcolo svolgibile manualmente o con strumenti equivalenti.