This paper is concerned on the Moduli spaces M= M(X,c1 ,c2 ,H) of rank 2 vector bundles on a smooth projective surface X, with Chern classes c1 Pic(X), c2 in Z, stable with respect to a fixed polarization H. We prove that when c2 is large, there are bundles in M with good cohomology. Then we show that when X has Kodaira dimension >0, then M contains at least one irregular component.

Ballico, E., Chiantini, L. (1992). On some properties of rank 2 bundles on algebraic surfaces. FORUM MATHEMATICUM, 4, 417-424 [10.1515/form.1992.4.417].

On some properties of rank 2 bundles on algebraic surfaces

CHIANTINI, LUCA
1992-01-01

Abstract

This paper is concerned on the Moduli spaces M= M(X,c1 ,c2 ,H) of rank 2 vector bundles on a smooth projective surface X, with Chern classes c1 Pic(X), c2 in Z, stable with respect to a fixed polarization H. We prove that when c2 is large, there are bundles in M with good cohomology. Then we show that when X has Kodaira dimension >0, then M contains at least one irregular component.
1992
Ballico, E., Chiantini, L. (1992). On some properties of rank 2 bundles on algebraic surfaces. FORUM MATHEMATICUM, 4, 417-424 [10.1515/form.1992.4.417].
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11365/38794
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo