Let $\Delta$ be a thick dual polar space of rank $n \geq 2$ and let $e$ be a full polarized embedding of $\Delta$ into a projective space $\Sigma$. For every point $x$ of $\Delta$ and every $i \in \{ 0,\ldots,n \}$, let $T_i(x)$ denote the subspace of $\Sigma$ generated by all points $e(y)$ with $\d(x,y) \leq i$. We show that $T_i(x)$ does not contain points $e(z)$ with $\d(x,z) \geq i+1$. We also show that there exists a well-defined map $e_i^x$ from the set of $(i-1)$-dimensional subspaces of the residue $Res_\Delta(x)$ of $\Delta$ at the point $x$ (which is a projective space of dimension $n-1$) to the set of points of the quotient space $T_i(x)/T_{i-1}(x)$. In this paper we study the structure of the maps $e_i^x$ and the subspaces $T_i(x)$ for some particular full polarized embeddings of the symplectic and the Hermitian dual polar spaces. Our investigations allow us to answer some questions asked in the literature.

Cardinali, I., De, B. (2008). The structure of full polarized embeddings of symplectic and hermitian dual polar spaces. ADVANCES IN GEOMETRY, 8, 111-137 [10.1515/advgeom.2008.008].

The structure of full polarized embeddings of symplectic and hermitian dual polar spaces

CARDINALI, ILARIA;
2008-01-01

Abstract

Let $\Delta$ be a thick dual polar space of rank $n \geq 2$ and let $e$ be a full polarized embedding of $\Delta$ into a projective space $\Sigma$. For every point $x$ of $\Delta$ and every $i \in \{ 0,\ldots,n \}$, let $T_i(x)$ denote the subspace of $\Sigma$ generated by all points $e(y)$ with $\d(x,y) \leq i$. We show that $T_i(x)$ does not contain points $e(z)$ with $\d(x,z) \geq i+1$. We also show that there exists a well-defined map $e_i^x$ from the set of $(i-1)$-dimensional subspaces of the residue $Res_\Delta(x)$ of $\Delta$ at the point $x$ (which is a projective space of dimension $n-1$) to the set of points of the quotient space $T_i(x)/T_{i-1}(x)$. In this paper we study the structure of the maps $e_i^x$ and the subspaces $T_i(x)$ for some particular full polarized embeddings of the symplectic and the Hermitian dual polar spaces. Our investigations allow us to answer some questions asked in the literature.
2008
Cardinali, I., De, B. (2008). The structure of full polarized embeddings of symplectic and hermitian dual polar spaces. ADVANCES IN GEOMETRY, 8, 111-137 [10.1515/advgeom.2008.008].
File in questo prodotto:
File Dimensione Formato  
aig_2007_008_print[1].pdf

non disponibili

Tipologia: Post-print
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 276.63 kB
Formato Adobe PDF
276.63 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11365/37962
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo