In this letter we point out that multilayer neural networks (MLP's) with either sigmoidal units or radial basis functions can be given a canonical form with positive interunits weights, which does not restrict the well-known MLP universal computational capabilities. We give some results on the local minima of the error function using this canonical form. In particular, we prove that the local minima free conditions established in previous works can be relaxed significantly.

Gori, M., Tsoi, A.C. (1998). Comments on local minima free conditions in multilayer perceptrons. IEEE TRANSACTIONS ON NEURAL NETWORKS, 9(5), 1051-1053 [10.1109/72.712191].

Comments on local minima free conditions in multilayer perceptrons

Gori, Marco;
1998-01-01

Abstract

In this letter we point out that multilayer neural networks (MLP's) with either sigmoidal units or radial basis functions can be given a canonical form with positive interunits weights, which does not restrict the well-known MLP universal computational capabilities. We give some results on the local minima of the error function using this canonical form. In particular, we prove that the local minima free conditions established in previous works can be relaxed significantly.
1998
Gori, M., Tsoi, A.C. (1998). Comments on local minima free conditions in multilayer perceptrons. IEEE TRANSACTIONS ON NEURAL NETWORKS, 9(5), 1051-1053 [10.1109/72.712191].
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11365/37875
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo