We show some non-emptiness results for the Severi varieties of nodal curves with fixed geometric genus in Pn, n > 2. For n = 3, we also fix a vector bundle E of rank 2 and look at the variety Vδ(E) parameterizing sections of E whose 0-locus is nodal, with fixed geometric genus. We establish some basic facts about Vδ(E) and prove some (almost sharp) non-obstructedness results for these varieties.
Ballico, E., Chiantini, L. (1998). A look into the Severi varieties of curves in higher codimension. COLLECTANEA MATHEMATICA, 49(2-3), 191-201.
A look into the Severi varieties of curves in higher codimension.
CHIANTINI, LUCA
1998-01-01
Abstract
We show some non-emptiness results for the Severi varieties of nodal curves with fixed geometric genus in Pn, n > 2. For n = 3, we also fix a vector bundle E of rank 2 and look at the variety Vδ(E) parameterizing sections of E whose 0-locus is nodal, with fixed geometric genus. We establish some basic facts about Vδ(E) and prove some (almost sharp) non-obstructedness results for these varieties.File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
Utilizza questo identificativo per citare o creare un link a questo documento:
https://hdl.handle.net/11365/37832
Attenzione
Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo