Human immunoglobulin heavy chain constant region (IGHC) genes constitute a typical multigene family, usually comprising eleven genes on the telomere of chromosome 14 (14q32). In this region, deleted and duplicated haplotypes have been reported to exist with considerable frequency. Their origin is the result of either unequal crossing-over or looping out excision. In this paper, we report the characterization of a new type of deletion, involving the IGHG4 gene, in a subject who also carries a larger deletion of a previously described type on the second chromosome. Employment of several methods (polymerase chain reaction, standard Southern blot, pulsed field gel electrophoresis, serological techniques) to analyze these deleted haplotypes has resulted in a level of accuracy in their characterization that has not been achieved in previous cases. The site of recombination responsible for the IGHG4 deletion was restricted to a 2.5-kb region 3' of the G4 gene; this rules out any possible involvement of the S regions in the recombination process. The usefulness of the various techniques in the characterization of the deletions is also discussed, together with possible future applications in the field.
Bottaro, A., Cariota, U., de Lange, G.G., Demarchi, M., Gallina, R., Oliviero, S., et al. (1990). Multiple levels of analysis of an IGHG4 gene deletion. HUMAN GENETICS, 86(2), 191-197 [10.1007/BF00197704].
Multiple levels of analysis of an IGHG4 gene deletion
Oliviero, S.;
1990-01-01
Abstract
Human immunoglobulin heavy chain constant region (IGHC) genes constitute a typical multigene family, usually comprising eleven genes on the telomere of chromosome 14 (14q32). In this region, deleted and duplicated haplotypes have been reported to exist with considerable frequency. Their origin is the result of either unequal crossing-over or looping out excision. In this paper, we report the characterization of a new type of deletion, involving the IGHG4 gene, in a subject who also carries a larger deletion of a previously described type on the second chromosome. Employment of several methods (polymerase chain reaction, standard Southern blot, pulsed field gel electrophoresis, serological techniques) to analyze these deleted haplotypes has resulted in a level of accuracy in their characterization that has not been achieved in previous cases. The site of recombination responsible for the IGHG4 deletion was restricted to a 2.5-kb region 3' of the G4 gene; this rules out any possible involvement of the S regions in the recombination process. The usefulness of the various techniques in the characterization of the deletions is also discussed, together with possible future applications in the field.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11365/37751
Attenzione
Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo