In this paper we determine a closed formula for the number of convex permutominoes of size n. We reach this goal by providing a recursive generation of all convex permutominoes of size n+1 from the objects of size n, according to the ECO method, and then translating this construction into a system of functional equations satised by the generating function of convex permutominoes. As a consequence we easily obtain also the enumeration of some classes of convex polyominoes, including stack and directed convex permutominoes.

Rinaldi, S., Disanto, F., Frosini, A., Pinzani, R. (2007). A closed formula for the number of convex permutominoes. ELECTRONIC JOURNAL OF COMBINATORICS, 14(1).

A closed formula for the number of convex permutominoes

RINALDI, SIMONE;
2007-01-01

Abstract

In this paper we determine a closed formula for the number of convex permutominoes of size n. We reach this goal by providing a recursive generation of all convex permutominoes of size n+1 from the objects of size n, according to the ECO method, and then translating this construction into a system of functional equations satised by the generating function of convex permutominoes. As a consequence we easily obtain also the enumeration of some classes of convex polyominoes, including stack and directed convex permutominoes.
Rinaldi, S., Disanto, F., Frosini, A., Pinzani, R. (2007). A closed formula for the number of convex permutominoes. ELECTRONIC JOURNAL OF COMBINATORICS, 14(1).
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11365/37749
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo