We study (i-)locally singular hyperplanes in a thick dual polar space of rank n. If is not of type DQ(2n, K), then we will show that every locally singular hyperplane of is singular. We will describe a new type of hyperplane in DQ(8, K) and show that every locally singular hyperplane of DQ(8, K) is either singular, the extension of a hexagonal hyperplane in a hex or of the new type.
Cardinali, I., DE BRUYN, B., Pasini, A. (2006). Locally singular hyperplanes in thick dual polar spaces of rank 4. JOURNAL OF COMBINATORIAL THEORY. SERIES A, 113(4), 636-646 [10.1016/j.jcta.2005.05.007].
Locally singular hyperplanes in thick dual polar spaces of rank 4
CARDINALI I.;PASINI A.
2006-01-01
Abstract
We study (i-)locally singular hyperplanes in a thick dual polar space of rank n. If is not of type DQ(2n, K), then we will show that every locally singular hyperplane of is singular. We will describe a new type of hyperplane in DQ(8, K) and show that every locally singular hyperplane of DQ(8, K) is either singular, the extension of a hexagonal hyperplane in a hex or of the new type.File | Dimensione | Formato | |
---|---|---|---|
locally-singular.pdf
non disponibili
Tipologia:
PDF editoriale
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
172.94 kB
Formato
Adobe PDF
|
172.94 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11365/37733
Attenzione
Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo