Let Delta be a dual polar space of rank n greate than 4, H be a hyperplane of Delta and Gamma: = Delta\setminus H be the complement of H in Delta. We shall prove that, if all lines of Delta have more than 3 points, then Gamma is simply connected. Then we show how this theorem can be exploited to prove that certain families of hyperplanes of dual polar spaces, or all hyperplanes of certain dual polar spaces, arise from embeddings.

Cardinali, I., DE BRUYN, B., Pasini, A. (2009). On the simple connectedness of hyperplane complements in dual polar spaces. DISCRETE MATHEMATICS, 309(2), 294-303 [10.1016/j.disc.2007.12.006].

On the simple connectedness of hyperplane complements in dual polar spaces

CARDINALI I.;PASINI A.
2009-01-01

Abstract

Let Delta be a dual polar space of rank n greate than 4, H be a hyperplane of Delta and Gamma: = Delta\setminus H be the complement of H in Delta. We shall prove that, if all lines of Delta have more than 3 points, then Gamma is simply connected. Then we show how this theorem can be exploited to prove that certain families of hyperplanes of dual polar spaces, or all hyperplanes of certain dual polar spaces, arise from embeddings.
2009
Cardinali, I., DE BRUYN, B., Pasini, A. (2009). On the simple connectedness of hyperplane complements in dual polar spaces. DISCRETE MATHEMATICS, 309(2), 294-303 [10.1016/j.disc.2007.12.006].
File in questo prodotto:
File Dimensione Formato  
simple connectedness.pdf

non disponibili

Tipologia: Post-print
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 574.25 kB
Formato Adobe PDF
574.25 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11365/37732
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo