We prove that a product of m > 5 copies of P^1, embedded in the projective space P^r by the standard Segre embedding, is k-identifiable (i.e. a general point of the secant variety S^k(X) is contained in only one (k + 1)-secant k-space), for all k such that k + 1 ≤ 2m−1/m. The research that led to the present paper was partially supported by a grant of the group GNSAGA of INdAM.

Bocci, C., Chiantini, L. (2013). On the identifiability of binary Segre products. JOURNAL OF ALGEBRAIC GEOMETRY, 22, 1-11 [10.1090/S1056-3911-2011-00592-4].

On the identifiability of binary Segre products

BOCCI, CRISTIANO;CHIANTINI, LUCA
2013-01-01

Abstract

We prove that a product of m > 5 copies of P^1, embedded in the projective space P^r by the standard Segre embedding, is k-identifiable (i.e. a general point of the secant variety S^k(X) is contained in only one (k + 1)-secant k-space), for all k such that k + 1 ≤ 2m−1/m. The research that led to the present paper was partially supported by a grant of the group GNSAGA of INdAM.
2013
Bocci, C., Chiantini, L. (2013). On the identifiability of binary Segre products. JOURNAL OF ALGEBRAIC GEOMETRY, 22, 1-11 [10.1090/S1056-3911-2011-00592-4].
File in questo prodotto:
File Dimensione Formato  
jag592.pdf

non disponibili

Tipologia: Post-print
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 194.15 kB
Formato Adobe PDF
194.15 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11365/37361
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo