A classification of semifield planes of order $q^4$ with kernel $F_{q^2}$ and center $F_q$ is given. For $q$ odd prime, this proves the conjecture stated in by M.~Cordero and R.~Figueroa. Also, we extend the classification of semifield planes lifted from Desarguesian planes of order $q^2,$ $q$ odd, obtained by Cordero and Figueroa in , to the even characteristic case.
Cardinali, I., Polverino, O., Trombetti, R. (2006). Semifield planes of order q4 with kernel Fq2 and center Fq. EUROPEAN JOURNAL OF COMBINATORICS, 27(6), 940-961 [10.1016/j.ejc.2005.04.005].
Semifield planes of order q4 with kernel Fq2 and center Fq
Cardinali, I.;
2006-01-01
Abstract
A classification of semifield planes of order $q^4$ with kernel $F_{q^2}$ and center $F_q$ is given. For $q$ odd prime, this proves the conjecture stated in by M.~Cordero and R.~Figueroa. Also, we extend the classification of semifield planes lifted from Desarguesian planes of order $q^2,$ $q$ odd, obtained by Cordero and Figueroa in , to the even characteristic case.File | Dimensione | Formato | |
---|---|---|---|
semifields.pdf
non disponibili
Tipologia:
PDF editoriale
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
326.92 kB
Formato
Adobe PDF
|
326.92 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11365/37209
Attenzione
Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo