A recent work has introduced a class of neural networks for solving linear programming problems, where all trajectories converge toward the global optimal solution in finite time. In this paper, it is shown that global convergence in finite time is robust with respect to tolerances in the electronic implementation, and an estimate of the allowed perturbations preserving convergence is obtained.

DI MARCO, M., Forti, M., Grazzini, M. (2006). Robustness of convergence in finite time for linear programming neural networks. INTERNATIONAL JOURNAL OF CIRCUIT THEORY AND APPLICATIONS, 34, 307-316 [10.1002/cta.352].

Robustness of convergence in finite time for linear programming neural networks

DI MARCO, MAURO;FORTI, MAURO;GRAZZINI, MASSIMO
2006-01-01

Abstract

A recent work has introduced a class of neural networks for solving linear programming problems, where all trajectories converge toward the global optimal solution in finite time. In this paper, it is shown that global convergence in finite time is robust with respect to tolerances in the electronic implementation, and an estimate of the allowed perturbations preserving convergence is obtained.
2006
DI MARCO, M., Forti, M., Grazzini, M. (2006). Robustness of convergence in finite time for linear programming neural networks. INTERNATIONAL JOURNAL OF CIRCUIT THEORY AND APPLICATIONS, 34, 307-316 [10.1002/cta.352].
File in questo prodotto:
File Dimensione Formato  
DFG-IJCTA-06.pdf

non disponibili

Tipologia: Post-print
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 121.23 kB
Formato Adobe PDF
121.23 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11365/3712
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo