Let n >= 3 and let F be a field of characteristic 2. Let DSp(2n, F) denote the dual polar space associated with the building of type C-n over F and let g(n-2) denote the (n - 2)-Grassmannian of type C-n. Using the bijective correspondence between the points of g(n-2) and the quads of DSp(2n, F), we construct a full projective embedding Of g(n-2) into the nucleus of the Grassmann embedding of DSp(2n. F). This generalizes a result of an earlier paper [1. Cardinali, G. Lunardon, A geometric description of the spin-embedding of symplectic dual polar spaces of rank 3, J. Combin. Theory Ser. A (in press)] which contains an alternative proof of this fact in the case when n = 3 and F is finite. (C) 2008 Elsevier Ltd. All rights reserved.
Blok, R.J., Cardinali, I., De Bruyn, B. (2009). On the nucleus of the Grassmmann embedding of the symplectic dual polar spaces DSp(2n,F), char(F)=2. EUROPEAN JOURNAL OF COMBINATORICS, 30(2), 468-472 [10.1016/j.ejc.2008.04.001].
On the nucleus of the Grassmmann embedding of the symplectic dual polar spaces DSp(2n,F), char(F)=2
Cardinali, Ilaria;
2009-01-01
Abstract
Let n >= 3 and let F be a field of characteristic 2. Let DSp(2n, F) denote the dual polar space associated with the building of type C-n over F and let g(n-2) denote the (n - 2)-Grassmannian of type C-n. Using the bijective correspondence between the points of g(n-2) and the quads of DSp(2n, F), we construct a full projective embedding Of g(n-2) into the nucleus of the Grassmann embedding of DSp(2n. F). This generalizes a result of an earlier paper [1. Cardinali, G. Lunardon, A geometric description of the spin-embedding of symplectic dual polar spaces of rank 3, J. Combin. Theory Ser. A (in press)] which contains an alternative proof of this fact in the case when n = 3 and F is finite. (C) 2008 Elsevier Ltd. All rights reserved.| File | Dimensione | Formato | |
|---|---|---|---|
|
EJC-BCDB.pdf
non disponibili
Tipologia:
Post-print
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
445.4 kB
Formato
Adobe PDF
|
445.4 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11365/36710
Attenzione
Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo
