In this article we apply the classical method of focal loci of families to give a lower bound for the genus of curves lying on general surfaces. First we translate and reprove Xu's result that any curve C on a general surface in P3 of degree d 5 has geometric genus g > 1 + degC(d-5)=2. Then we prove a similar lower bound for the curves lying on a general surface in a given component of the Noether-Lefschetz locus in P3 and on a general projectively Cohen-Macaulay surface in P4.

Chiantini, L., Lopez, A.F. (1999). Focal loci of families and the genus of curves on surfaces. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 127(11), 3451-3459 [10.1090/S0002-9939-99-05407-6].

Focal loci of families and the genus of curves on surfaces

CHIANTINI, LUCA;
1999-01-01

Abstract

In this article we apply the classical method of focal loci of families to give a lower bound for the genus of curves lying on general surfaces. First we translate and reprove Xu's result that any curve C on a general surface in P3 of degree d 5 has geometric genus g > 1 + degC(d-5)=2. Then we prove a similar lower bound for the curves lying on a general surface in a given component of the Noether-Lefschetz locus in P3 and on a general projectively Cohen-Macaulay surface in P4.
1999
Chiantini, L., Lopez, A.F. (1999). Focal loci of families and the genus of curves on surfaces. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 127(11), 3451-3459 [10.1090/S0002-9939-99-05407-6].
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11365/36388
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo