In this paper we consider a restricted class of polyominoes that we call Z-convex polyominoes. Z-convex polyominoes are polyominoes such that any two pairs of cells can be connected by a monotone path making at most two turns (like the letter Z). This class of convex polyominoes appears to resist standard decompositions, so we propose a construction by “inflation” that allows to write a system of functional equations for their generating functions. The generating function P(t) of Z-convex polyominoes with respect to the semi-perimeter turns out to be algebraic all the same and surprisingly, like the generating function of convex polyominoes, it can be expressed as a rational function of t and the generating function of Catalan numbers.
Duchi, E., Rinaldi, S., Schaeffer, G. (2008). The number of Z-convex polyominoes. ADVANCES IN APPLIED MATHEMATICS, 40(1), 54-72 [10.1016/j.aam.2006.07.004].
The number of Z-convex polyominoes
Rinaldi, S.;
2008-01-01
Abstract
In this paper we consider a restricted class of polyominoes that we call Z-convex polyominoes. Z-convex polyominoes are polyominoes such that any two pairs of cells can be connected by a monotone path making at most two turns (like the letter Z). This class of convex polyominoes appears to resist standard decompositions, so we propose a construction by “inflation” that allows to write a system of functional equations for their generating functions. The generating function P(t) of Z-convex polyominoes with respect to the semi-perimeter turns out to be algebraic all the same and surprisingly, like the generating function of convex polyominoes, it can be expressed as a rational function of t and the generating function of Catalan numbers.File | Dimensione | Formato | |
---|---|---|---|
z-convex.pdf
non disponibili
Tipologia:
PDF editoriale
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
744.82 kB
Formato
Adobe PDF
|
744.82 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11365/35952
Attenzione
Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo