Mouse erythrocytes were incubated with oxidizing agents, phenylhydrazine, divicine and isouramil. With all the oxidants a rapid release of iron in a desferrioxamine (DFO)-chelatable form was seen and it was accompanied by methaemoglobin formation. If the erythrocytes were depleted of GSH by a short preincubation with diethyl maleate, the release of iron was accompanied by lipid peroxidation and, subsequently, haemolysis. GSH depletion by itself did not induce iron release, methaemoglobin formation, lipid peroxidation or haemolysis. Rather, the fate of the cell in which iron is released depended on the intracellular availability of GSH. In addition, iron release was higher in depleted cells than in native ones, suggesting a role for GSH in preventing iron release when oxidative stress is imposed by the oxidants. Iron release preceded lipid peroxidation. The latter was prevented when the erythrocytes were preloaded with DFO in such a way (preincubation with 10 mM-DFO) that the intracellular concentration was equivalent to that of the released iron, but not when the intracellular DFO was lower (preincubation with 0.1 mM-DFO). Extracellular DFO did not affect lipid peroxidation and haemolysis, suggesting again that the observed events occur intracellularly (intracellular chelation of released iron). The relevance of iron release from iron complexes in the mechanisms of cellular damage induced by oxidative stress is discussed.

Ferrali, M., Signorini, C., Ciccoli, L., Comporti, M. (1992). Iron release and membrane damage in erythrocytes exposed to oxidizing agents, phenylhydrazine, divicine and isouramil. BIOCHEMICAL JOURNAL, 285(1), 295-301 [10.1042/bj2850295].

Iron release and membrane damage in erythrocytes exposed to oxidizing agents, phenylhydrazine, divicine and isouramil

FERRALI, M.;SIGNORINI, C.;CICCOLI, L.;COMPORTI, M.
1992-01-01

Abstract

Mouse erythrocytes were incubated with oxidizing agents, phenylhydrazine, divicine and isouramil. With all the oxidants a rapid release of iron in a desferrioxamine (DFO)-chelatable form was seen and it was accompanied by methaemoglobin formation. If the erythrocytes were depleted of GSH by a short preincubation with diethyl maleate, the release of iron was accompanied by lipid peroxidation and, subsequently, haemolysis. GSH depletion by itself did not induce iron release, methaemoglobin formation, lipid peroxidation or haemolysis. Rather, the fate of the cell in which iron is released depended on the intracellular availability of GSH. In addition, iron release was higher in depleted cells than in native ones, suggesting a role for GSH in preventing iron release when oxidative stress is imposed by the oxidants. Iron release preceded lipid peroxidation. The latter was prevented when the erythrocytes were preloaded with DFO in such a way (preincubation with 10 mM-DFO) that the intracellular concentration was equivalent to that of the released iron, but not when the intracellular DFO was lower (preincubation with 0.1 mM-DFO). Extracellular DFO did not affect lipid peroxidation and haemolysis, suggesting again that the observed events occur intracellularly (intracellular chelation of released iron). The relevance of iron release from iron complexes in the mechanisms of cellular damage induced by oxidative stress is discussed.
1992
Ferrali, M., Signorini, C., Ciccoli, L., Comporti, M. (1992). Iron release and membrane damage in erythrocytes exposed to oxidizing agents, phenylhydrazine, divicine and isouramil. BIOCHEMICAL JOURNAL, 285(1), 295-301 [10.1042/bj2850295].
File in questo prodotto:
File Dimensione Formato  
Biochem J. 1992.pdf

non disponibili

Tipologia: Post-print
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 1.41 MB
Formato Adobe PDF
1.41 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11365/3357
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo