OBJECTIVE: Peripheral benzodiazepine receptors (PBRs) are part of the mitochondrial permeability transition pore, and their activation may induce cell death. PBRs are expressed in human pancreatic islets, and cytokine-induced damage is accompanied by changes in their properties. We hypothesized that PBRs can have a role in human islet physiopathology, and evaluated the effects of prolonged exposure to two specific PBR ligands, PK11195 and Ro5-4864 on the function and survival of isolated human islets. DESIGN: Isolated human islets were prepared from the pancreas of 25 multiorgan cadaveric donors and incubated for 12 h in the presence of PK11195 or Ro5-4864. Insulin secretion studies and apoptosis experiments were then performed, together with assessment of intracellular pathways involved in islet cell function and survival. METHODS: Islets were prepared by enzymatic digestion and density gradient purification. Insulin secretion was assessed by the batch incubation method, and glucose oxidation was evaluated by the use of D-[U-(14)C]glucose. Apoptosis was studied using the TUNEL technique, ELISA methods, and electron microscopy evaluation. PCR experiments were performed by the use of specific primers. RESULTS: Glucose-stimulated insulin release was significantly lower after exposure to PK11195 than after exposure to Ro5-4864. This was accompanied by reduced glucose oxidation and no major change of insulin or GLUT-1 mRNA expression. Apoptosis was higher in PK11195-exposed islets, and electron microscopy demonstrated the involvement of beta-cells. The apoptotic effects were prevented by bongkrekic acid and low-dose cyclosporin A, which stabilize the mitochondrial membrane, and were associated with no evident change of inducible nitric oxide synthase (iNOS), B-cell leukemia/lymphoma-2 (Bcl-2) or Bcl-2-associated X protein (Bax) expression. Caspase inhibition markedly reduced the amount of apoptosis, and the role of these proteases was confirmed by the increased activity of caspase-3 and caspase-9. CONCLUSIONS: Prolonged binding to PBRs may cause human beta-cells functional damage and apoptosis, a phenomenon which is prevented by stabilizing the mitochondrial membrane; occurs without changes of iNOS, Bax and Bcl-2 mRNA expression; and involves caspase activation. These results suggest an involvement of PBRs in human pancreatic beta-cell function and survival.

Marselli, L., Trincavelli, L., Santangelo, C., Lupi, R., Del Guerra, S., Boggi, U., et al. (2004). The role of peripheral benzodiazepine receptors on the function and survival of isolated human pancreatic islets. EUROPEAN JOURNAL OF ENDOCRINOLOGY, 151(2), 207-214 [10.1530/eje.0.1510207].

The role of peripheral benzodiazepine receptors on the function and survival of isolated human pancreatic islets.

DOTTA, FRANCESCO;
2004-01-01

Abstract

OBJECTIVE: Peripheral benzodiazepine receptors (PBRs) are part of the mitochondrial permeability transition pore, and their activation may induce cell death. PBRs are expressed in human pancreatic islets, and cytokine-induced damage is accompanied by changes in their properties. We hypothesized that PBRs can have a role in human islet physiopathology, and evaluated the effects of prolonged exposure to two specific PBR ligands, PK11195 and Ro5-4864 on the function and survival of isolated human islets. DESIGN: Isolated human islets were prepared from the pancreas of 25 multiorgan cadaveric donors and incubated for 12 h in the presence of PK11195 or Ro5-4864. Insulin secretion studies and apoptosis experiments were then performed, together with assessment of intracellular pathways involved in islet cell function and survival. METHODS: Islets were prepared by enzymatic digestion and density gradient purification. Insulin secretion was assessed by the batch incubation method, and glucose oxidation was evaluated by the use of D-[U-(14)C]glucose. Apoptosis was studied using the TUNEL technique, ELISA methods, and electron microscopy evaluation. PCR experiments were performed by the use of specific primers. RESULTS: Glucose-stimulated insulin release was significantly lower after exposure to PK11195 than after exposure to Ro5-4864. This was accompanied by reduced glucose oxidation and no major change of insulin or GLUT-1 mRNA expression. Apoptosis was higher in PK11195-exposed islets, and electron microscopy demonstrated the involvement of beta-cells. The apoptotic effects were prevented by bongkrekic acid and low-dose cyclosporin A, which stabilize the mitochondrial membrane, and were associated with no evident change of inducible nitric oxide synthase (iNOS), B-cell leukemia/lymphoma-2 (Bcl-2) or Bcl-2-associated X protein (Bax) expression. Caspase inhibition markedly reduced the amount of apoptosis, and the role of these proteases was confirmed by the increased activity of caspase-3 and caspase-9. CONCLUSIONS: Prolonged binding to PBRs may cause human beta-cells functional damage and apoptosis, a phenomenon which is prevented by stabilizing the mitochondrial membrane; occurs without changes of iNOS, Bax and Bcl-2 mRNA expression; and involves caspase activation. These results suggest an involvement of PBRs in human pancreatic beta-cell function and survival.
2004
Marselli, L., Trincavelli, L., Santangelo, C., Lupi, R., Del Guerra, S., Boggi, U., et al. (2004). The role of peripheral benzodiazepine receptors on the function and survival of isolated human pancreatic islets. EUROPEAN JOURNAL OF ENDOCRINOLOGY, 151(2), 207-214 [10.1530/eje.0.1510207].
File in questo prodotto:
File Dimensione Formato  
Marselli et al Eur J Endocrinol 2004.pdf

non disponibili

Tipologia: Post-print
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 338.4 kB
Formato Adobe PDF
338.4 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11365/33186
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo