The Taranto Gulf of southern Italy provides an excellent case where it is possible to document the importance of normal faults in displacing terraced deposits. The study area is located at the front of the southern Apennines, that is a fold-and-thrust belt developed following the closure of the Mesozoic Tethys Ocean, and the deformation of the Adriatic passive margin during Tertiary and Quaternary times. The outer, eastern parts of the belt were structured in Quaternary, i.e. up to Middle Pleistocene times. The front of the chain is partially sealed by Pliocene–Pleistocene foredeep deposits, which represent the infill of the Bradanic Trough. The upper portion of the middle Pleistocene succession consists of marine sands and conglomerates that in the previous literature have been arranged in several orders of terraces. Analysis of aerial photographs and geomorphological mapping has shown the occurrence of prominent geomorphic lineaments, which appear to control the local drainage pattern. Some of these structures coincide with the map trace of normal faults that produce vertical offsets of the marine terrace surfaces in the order of ca. 10 m each. Many of the fault escarpments reduce their elevation and terminate laterally. In other cases fault escarpments are laterally continuous and can be traced for up to 3–4 km. Scarp height is between 2 and 10 m. Their mean trend ranges from NNE– SSW to ENE–WSWand defines an arcuate pattern that mimics the present coastline. An accurate geomorphological, sedimentological and stratigraphic analysis has been carried out in a selected area of the Bradanic Trough (Pisticci transect) to investigate in detail the relationships between normal faults and the development of the terraces. This analysis allowed us to recognise five facies associations related to the upper and lower beachface and to the neritic clays which represent the substratum of the terraces. More importantly, we observed that all the terraced deposits in the Pisticci transect could be referred to a single sedimentary body displaced by faults. The terraced deposits are related to an event of beach progradation, of Middle Pleistocene age, which has been documented in other areas of the Italian peninsula. These results outline an intimate relationship between the arcuate trend of the recognised fault set and the present coastline pattern. The development of the normal faults can be related to large-scale gravitational processes developed after the general tilting towards the SE of the Bradanic Trough.
Bentivenga, M., Coltorti, M., Prosser, G., Tavarnelli, E. (2004). A new interpretation of terraces in the Taranto Gulf: the role of extensional faulting. GEOMORPHOLOGY, 60(3-4), 383-402 [10.1016/j.geomorph.2003.10.002].
A new interpretation of terraces in the Taranto Gulf: the role of extensional faulting
COLTORTI, M.;TAVARNELLI, E.
2004-01-01
Abstract
The Taranto Gulf of southern Italy provides an excellent case where it is possible to document the importance of normal faults in displacing terraced deposits. The study area is located at the front of the southern Apennines, that is a fold-and-thrust belt developed following the closure of the Mesozoic Tethys Ocean, and the deformation of the Adriatic passive margin during Tertiary and Quaternary times. The outer, eastern parts of the belt were structured in Quaternary, i.e. up to Middle Pleistocene times. The front of the chain is partially sealed by Pliocene–Pleistocene foredeep deposits, which represent the infill of the Bradanic Trough. The upper portion of the middle Pleistocene succession consists of marine sands and conglomerates that in the previous literature have been arranged in several orders of terraces. Analysis of aerial photographs and geomorphological mapping has shown the occurrence of prominent geomorphic lineaments, which appear to control the local drainage pattern. Some of these structures coincide with the map trace of normal faults that produce vertical offsets of the marine terrace surfaces in the order of ca. 10 m each. Many of the fault escarpments reduce their elevation and terminate laterally. In other cases fault escarpments are laterally continuous and can be traced for up to 3–4 km. Scarp height is between 2 and 10 m. Their mean trend ranges from NNE– SSW to ENE–WSWand defines an arcuate pattern that mimics the present coastline. An accurate geomorphological, sedimentological and stratigraphic analysis has been carried out in a selected area of the Bradanic Trough (Pisticci transect) to investigate in detail the relationships between normal faults and the development of the terraces. This analysis allowed us to recognise five facies associations related to the upper and lower beachface and to the neritic clays which represent the substratum of the terraces. More importantly, we observed that all the terraced deposits in the Pisticci transect could be referred to a single sedimentary body displaced by faults. The terraced deposits are related to an event of beach progradation, of Middle Pleistocene age, which has been documented in other areas of the Italian peninsula. These results outline an intimate relationship between the arcuate trend of the recognised fault set and the present coastline pattern. The development of the normal faults can be related to large-scale gravitational processes developed after the general tilting towards the SE of the Bradanic Trough.File | Dimensione | Formato | |
---|---|---|---|
2004 Bentivenga Golfo di Taranto Geomorphology.pdf
non disponibili
Tipologia:
Post-print
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
1.63 MB
Formato
Adobe PDF
|
1.63 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11365/3133
Attenzione
Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo