We describe a method for proving the existence of periodic solutions to n-dimensional systems of the form z'(t) - Az(t) - Bz(t - tau) = F[z(t)]. The proposed method is based on the harmonic balance method and the theory of reproducing kernels.

Macki, J., Nistri, P., Zecca, P. (1996). An approximation method for the existence of periodic solutions to systems with delay. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 76(2), 205-208.

An approximation method for the existence of periodic solutions to systems with delay

NISTRI, PAOLO;
1996-01-01

Abstract

We describe a method for proving the existence of periodic solutions to n-dimensional systems of the form z'(t) - Az(t) - Bz(t - tau) = F[z(t)]. The proposed method is based on the harmonic balance method and the theory of reproducing kernels.
1996
Macki, J., Nistri, P., Zecca, P. (1996). An approximation method for the existence of periodic solutions to systems with delay. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 76(2), 205-208.
File in questo prodotto:
File Dimensione Formato  
498064-U-GOV.pdf

non disponibili

Tipologia: Post-print
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 166.22 kB
Formato Adobe PDF
166.22 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11365/31139
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo