Some recent reports indicate that lipid peroxidation might play a crucial role in the production of allyl alcohol hepatotoxicity. Previous work from our laboratory has suggested that in the case of bromobenzene, a hepatotoxin sharing the ability of allyl alcohol to induce a marked depletion of liver glutathione, liver injury is likely to be mediated by lipid peroxidation. In particular, we demonstrated that 4-hydroxynonenal and other aldehydes derived from lipid peroxidation can be detected in the liver of bromobenzene-poisoned mice. In the present study, we report also the in vivo formation of 4-hydroxynonenal and other aldehydes after allyl alcohol poisoning. 24-h-fasted mice were intoxicated with allyl alcohol (1.5 mmol/kg body wt., i.p.) and killed 1-3 h later. 4-Hydroxynonenal and other carbonyls were looked for in liver extracts in the form of 2,4-dinitrophenylhydrazone derivatives. After fractionation of liver extracts by means of thin-layer chromatography (TLC), a well-resolved peak corresponding to standard 4-hydroxynonenal was obtained in the high-pressure liquid chromatography analysis. Total carbonyls (as 2,4-dinitrophenylhydrazones) were separated by TLC into three fractions, according to their different polarity. The amounts of carbonyls present in each fraction were determined by ultraviolet-visible spectroscopy. In addition, several products were identified in the fraction of the 'non-polar carbonyls' corresponding to alkanals and alk-2-enals. © 1988.

Pompella, A., Romani, A., Fulceri, R., Benedetti, A., Comporti, M. (1988). 4-Hydroxynonenal and other lipid peroxidation products are formed in mouse liver following intoxication with allyl alcohol. BIOCHIMICA ET BIOPHYSICA ACTA, 961(3), 293-298 [10.1016/0005-2760(88)90076-8].

4-Hydroxynonenal and other lipid peroxidation products are formed in mouse liver following intoxication with allyl alcohol

Fulceri, R.;Benedetti, A.;Comporti, M.
1988-01-01

Abstract

Some recent reports indicate that lipid peroxidation might play a crucial role in the production of allyl alcohol hepatotoxicity. Previous work from our laboratory has suggested that in the case of bromobenzene, a hepatotoxin sharing the ability of allyl alcohol to induce a marked depletion of liver glutathione, liver injury is likely to be mediated by lipid peroxidation. In particular, we demonstrated that 4-hydroxynonenal and other aldehydes derived from lipid peroxidation can be detected in the liver of bromobenzene-poisoned mice. In the present study, we report also the in vivo formation of 4-hydroxynonenal and other aldehydes after allyl alcohol poisoning. 24-h-fasted mice were intoxicated with allyl alcohol (1.5 mmol/kg body wt., i.p.) and killed 1-3 h later. 4-Hydroxynonenal and other carbonyls were looked for in liver extracts in the form of 2,4-dinitrophenylhydrazone derivatives. After fractionation of liver extracts by means of thin-layer chromatography (TLC), a well-resolved peak corresponding to standard 4-hydroxynonenal was obtained in the high-pressure liquid chromatography analysis. Total carbonyls (as 2,4-dinitrophenylhydrazones) were separated by TLC into three fractions, according to their different polarity. The amounts of carbonyls present in each fraction were determined by ultraviolet-visible spectroscopy. In addition, several products were identified in the fraction of the 'non-polar carbonyls' corresponding to alkanals and alk-2-enals. © 1988.
Pompella, A., Romani, A., Fulceri, R., Benedetti, A., Comporti, M. (1988). 4-Hydroxynonenal and other lipid peroxidation products are formed in mouse liver following intoxication with allyl alcohol. BIOCHIMICA ET BIOPHYSICA ACTA, 961(3), 293-298 [10.1016/0005-2760(88)90076-8].
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11365/31071
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo