When a continuous population is sampled, the spatial mean is often the target parameter if the design-based approach is assumed. In this case, auxiliary information may be suitably used to increase the accuracy of the spatial mean estimators. To this end, regression models are usually considered at the estimation stage in order to implement regression estimators. Since the spatial mean may be obviously represented as a bivariate integral, the strategies for placing the sampling locations are actually Monte Carlo integration methods. Hence, the regression-based estimation is equivalent to the control-variate integration method. In this setting, we suggest more refined Monte Carlo integration strategies which may drastically increase the regression estimator accuracy. Copyright (c) 2005 John Wiley & Sons, Ltd.

Barabesi, L., Marcheselli, M. (2005). Monte Carlo integration strategies for design-based regression estimators of the spatial mean. ENVIRONMETRICS, 16(8), 803-817 [10.1002/env.735].

Monte Carlo integration strategies for design-based regression estimators of the spatial mean

Barabesi, Lucio;Marcheselli, Marzia
2005-01-01

Abstract

When a continuous population is sampled, the spatial mean is often the target parameter if the design-based approach is assumed. In this case, auxiliary information may be suitably used to increase the accuracy of the spatial mean estimators. To this end, regression models are usually considered at the estimation stage in order to implement regression estimators. Since the spatial mean may be obviously represented as a bivariate integral, the strategies for placing the sampling locations are actually Monte Carlo integration methods. Hence, the regression-based estimation is equivalent to the control-variate integration method. In this setting, we suggest more refined Monte Carlo integration strategies which may drastically increase the regression estimator accuracy. Copyright (c) 2005 John Wiley & Sons, Ltd.
2005
Barabesi, L., Marcheselli, M. (2005). Monte Carlo integration strategies for design-based regression estimators of the spatial mean. ENVIRONMETRICS, 16(8), 803-817 [10.1002/env.735].
File in questo prodotto:
File Dimensione Formato  
env2005.pdf

non disponibili

Tipologia: Post-print
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 190.69 kB
Formato Adobe PDF
190.69 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
MonteCarloabstract.pdf

non disponibili

Tipologia: Abstract
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 4.94 kB
Formato Adobe PDF
4.94 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11365/3067
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo