The contribution of joint afferents to the response of cortical neurons in area 3a to mechanical stimulation of the contralateral hindlimb was evaluated in cats anesthetized with sodium pentobarbital and paralyzed with pancuronium bromide. The hindlimb projection to the pericruciate cortex was established by recording the evoked potentials to electrical stimulation of the sciatic nerve and some of its branches, the bicepssemitendinosus and the quadratus femoris. Out of 169 neurons, 63 responded exclusively to cutaneous stimuli (superficial), whereas the others could be activated by local pressure of hindlimb muscles and/or by joint rotation (deep). Deep neurons were classified as slowly adapting (SA) or rapidly adapting (RA) units. In the neurons responding exclusively to joint rotation, the site of the receptive field could not be identified with certainty. In 13 deep neurons, their firing was affected by rotation of multiple joints of the contralateral hindlimb. In an attempt to identify the source of activation of cortical neurons, partial denervations and muscle disconnections were performed in five animals to isolate and stimulate the hip capsule. In these preparations, in 14 of 15 cortical neurons the source of activation was localized in the periarticular muscles, with no response to mechanical stimulation of the joint capsule. Only one neuron (SA) could be selectively excited by punctate pressure on the hip capsule. Our results suggest that in neurons of area 3a of the cat, the information about the position of the femur relies mainly on muscle afferents.

Aloisi, A.M., Decchi, B., Fontani, G., Rossi, A., Carli, G. (1996). Response of cat cortical neurons to position and movement of the femur. SOMATOSENSORY & MOTOR RESEARCH, 13(3-4), 263-271 [10.3109/08990229609052582].

Response of cat cortical neurons to position and movement of the femur

ALOISI A. M.;FONTANI G.;ROSSI A.;CARLI G.
1996-01-01

Abstract

The contribution of joint afferents to the response of cortical neurons in area 3a to mechanical stimulation of the contralateral hindlimb was evaluated in cats anesthetized with sodium pentobarbital and paralyzed with pancuronium bromide. The hindlimb projection to the pericruciate cortex was established by recording the evoked potentials to electrical stimulation of the sciatic nerve and some of its branches, the bicepssemitendinosus and the quadratus femoris. Out of 169 neurons, 63 responded exclusively to cutaneous stimuli (superficial), whereas the others could be activated by local pressure of hindlimb muscles and/or by joint rotation (deep). Deep neurons were classified as slowly adapting (SA) or rapidly adapting (RA) units. In the neurons responding exclusively to joint rotation, the site of the receptive field could not be identified with certainty. In 13 deep neurons, their firing was affected by rotation of multiple joints of the contralateral hindlimb. In an attempt to identify the source of activation of cortical neurons, partial denervations and muscle disconnections were performed in five animals to isolate and stimulate the hip capsule. In these preparations, in 14 of 15 cortical neurons the source of activation was localized in the periarticular muscles, with no response to mechanical stimulation of the joint capsule. Only one neuron (SA) could be selectively excited by punctate pressure on the hip capsule. Our results suggest that in neurons of area 3a of the cat, the information about the position of the femur relies mainly on muscle afferents.
1996
Aloisi, A.M., Decchi, B., Fontani, G., Rossi, A., Carli, G. (1996). Response of cat cortical neurons to position and movement of the femur. SOMATOSENSORY & MOTOR RESEARCH, 13(3-4), 263-271 [10.3109/08990229609052582].
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11365/30338
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo