Cdk9 and Cdk7 are cdc2-like serine/threonine kinases that stabilize RNA transcript elongation through RNA polII carboxyl terminal domain (CTD) phosphorylation and are considered suitable targets for cancer therapy. The effects of flavopiridol and of siRNA-mediated inhibition of Cdk9 and/or Cdk7 were analyzed in human glioblastoma and human prostate cancer cell lines. One finding revealed that Cdk9 and Cdk7 could substitute each other in RNA polII CTD phosphorylation in contrast to the in vitro system. Thus, a simultaneous inhibition of Cdk9 and Cdk7 might be required both for targeting malignant cells and developing a platform for microarray analysis. However, these two pathways are not redundant, as indicated by differential effects observed in cell cycle regulation following siRNA-mediated inhibition of Cdk9 and/or Cdk7 in human PC3 prostate cancer cell line. Specifically, siRNA-mediated inhibition of Cdk9 caused a shift from G 0/G 1 to G 2/M phase in human PC3 prostate cancer cell line. Another finding showed that flavopiridol treatment induced a substantial AKT-Ser473 phosphorylation in human glioblastoma T98G cell line in contrast to siRNA-mediated inhibition of Cdk9 and Cdk9 combined with Cdk7, whereas siRNA-mediated silencing of Cdk7 caused a minor increase in AKT-Ser473 phosphorylation. AKT-Ser473 is a hallmark of AKT pathway activation and may protect cells from apoptosis. This finding also shows that Cdk9 and Cdk7 pathways are not redundant and may have important implications in drug development and for studying the mechanism of chemoresistance in malignant cells.

Caracciolo, V., Laurenti, G., Romano, G., Carnevale, V., Cimini, A.M., Crozier-Fitzgerald, C., et al. (2012). Flavopiridol induces phosphorylation of AKT in a human glioblastoma cell line, in contrast to siRNA-mediated silencing of Cdk9: Implications for drug design and development. CELL CYCLE, 11(6), 1202-1216 [10.4161/cc.11.6.19663].

Flavopiridol induces phosphorylation of AKT in a human glioblastoma cell line, in contrast to siRNA-mediated silencing of Cdk9: Implications for drug design and development

Giordano A.
2012-01-01

Abstract

Cdk9 and Cdk7 are cdc2-like serine/threonine kinases that stabilize RNA transcript elongation through RNA polII carboxyl terminal domain (CTD) phosphorylation and are considered suitable targets for cancer therapy. The effects of flavopiridol and of siRNA-mediated inhibition of Cdk9 and/or Cdk7 were analyzed in human glioblastoma and human prostate cancer cell lines. One finding revealed that Cdk9 and Cdk7 could substitute each other in RNA polII CTD phosphorylation in contrast to the in vitro system. Thus, a simultaneous inhibition of Cdk9 and Cdk7 might be required both for targeting malignant cells and developing a platform for microarray analysis. However, these two pathways are not redundant, as indicated by differential effects observed in cell cycle regulation following siRNA-mediated inhibition of Cdk9 and/or Cdk7 in human PC3 prostate cancer cell line. Specifically, siRNA-mediated inhibition of Cdk9 caused a shift from G 0/G 1 to G 2/M phase in human PC3 prostate cancer cell line. Another finding showed that flavopiridol treatment induced a substantial AKT-Ser473 phosphorylation in human glioblastoma T98G cell line in contrast to siRNA-mediated inhibition of Cdk9 and Cdk9 combined with Cdk7, whereas siRNA-mediated silencing of Cdk7 caused a minor increase in AKT-Ser473 phosphorylation. AKT-Ser473 is a hallmark of AKT pathway activation and may protect cells from apoptosis. This finding also shows that Cdk9 and Cdk7 pathways are not redundant and may have important implications in drug development and for studying the mechanism of chemoresistance in malignant cells.
2012
Caracciolo, V., Laurenti, G., Romano, G., Carnevale, V., Cimini, A.M., Crozier-Fitzgerald, C., et al. (2012). Flavopiridol induces phosphorylation of AKT in a human glioblastoma cell line, in contrast to siRNA-mediated silencing of Cdk9: Implications for drug design and development. CELL CYCLE, 11(6), 1202-1216 [10.4161/cc.11.6.19663].
File in questo prodotto:
File Dimensione Formato  
CaraccioloCC11-6.pdf

non disponibili

Tipologia: PDF editoriale
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 3 MB
Formato Adobe PDF
3 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11365/29155
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo