We evaluated the synthesis of nitric oxide (NO) and of the neurotoxic kynurenine metabolites 3OH-kynurenine and quinolinic acid (QUIN) in interferon-gamma (IFN-gamma)-activated macrophages of the murine BACl.2F5 cell line with the aim of investigating the roles of mononuclear phagocytes in inflammatory neurological disorders. IFN-gamma induced indoleamine 2,3-dioxygenase (IDO) and NO synthase (NOS) and increased the synthesis of 3OH-kynurenine, QUIN, and NO that accumulated in the incubation medium where they reached neurotoxic levels. Macrophage exposure to norharmane, an IDO inhibitor, resulted in a decreased formation of not only the kynurenine metabolites but also NO. The inhibition of NO synthesis could not be ascribed to reduced NADPH availability or decreased NOS induction. Norharmane inhibited NOS activity also in coronary vascular endothelial cells and in isolated aortic rings. Our findings suggest that activated macrophages release large amounts of neurotoxic molecules and that norharmane may represent a prototype compound to study macrophage involvement in inflammatory brain damage.

Chiarugi, A., Della Scarpa, P., Paccagnini, A., Donnini, S., Filippi, S., Moroni, F. (2000). Combined inhibition of indoleamine 2,3-dioxygenase and nitric oxide synthase modulates neurotoxin release by interferon-y-activated macrophages. JOURNAL OF LEUKOCYTE BIOLOGY, 68(2), 260-266 [10.1189/jlb.68.2.260].

Combined inhibition of indoleamine 2,3-dioxygenase and nitric oxide synthase modulates neurotoxin release by interferon-y-activated macrophages

Donnini, Sandra;
2000-01-01

Abstract

We evaluated the synthesis of nitric oxide (NO) and of the neurotoxic kynurenine metabolites 3OH-kynurenine and quinolinic acid (QUIN) in interferon-gamma (IFN-gamma)-activated macrophages of the murine BACl.2F5 cell line with the aim of investigating the roles of mononuclear phagocytes in inflammatory neurological disorders. IFN-gamma induced indoleamine 2,3-dioxygenase (IDO) and NO synthase (NOS) and increased the synthesis of 3OH-kynurenine, QUIN, and NO that accumulated in the incubation medium where they reached neurotoxic levels. Macrophage exposure to norharmane, an IDO inhibitor, resulted in a decreased formation of not only the kynurenine metabolites but also NO. The inhibition of NO synthesis could not be ascribed to reduced NADPH availability or decreased NOS induction. Norharmane inhibited NOS activity also in coronary vascular endothelial cells and in isolated aortic rings. Our findings suggest that activated macrophages release large amounts of neurotoxic molecules and that norharmane may represent a prototype compound to study macrophage involvement in inflammatory brain damage.
2000
Chiarugi, A., Della Scarpa, P., Paccagnini, A., Donnini, S., Filippi, S., Moroni, F. (2000). Combined inhibition of indoleamine 2,3-dioxygenase and nitric oxide synthase modulates neurotoxin release by interferon-y-activated macrophages. JOURNAL OF LEUKOCYTE BIOLOGY, 68(2), 260-266 [10.1189/jlb.68.2.260].
File in questo prodotto:
File Dimensione Formato  
JLeikocBiol.pdf

non disponibili

Tipologia: Post-print
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 222.93 kB
Formato Adobe PDF
222.93 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11365/28038
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo